K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2020

đặt ab/3=ac/4=bc/5=k

=> ab=3k;ac=4k;bc=5k

ta có ab^2 +ac^2=(3k)^2+(4k)^2=9k^2 + 16k^2=25k^5

mà bc^2 = (5k)^2=25k^2

=>tam giác abc là tam giác Vuông

10 tháng 3 2016

Theo giả thiết : BC - AC = 3 => AC = BC -3

THeo định lý Pytago : BC2 = AB2 + (BC-3)2 

BC2 = AB+ BC2 - 6BC + 9

0 = AB2 - 6BC + 9 => 6BC = AB2 + 9

6BC = 92 + 9 = 90 => BC = 15 (cm) 

Ta có : AC = 15 - 3 = 12 (cm)

6 tháng 2 2016

Vì AB+AC=17 và AB - AC=7.Do đó:

 Cạnh AB là:

    (17+7):2=12(cm)

 Cạnh AC là:

    17-12=5(cm)

Xét tam giác ABC vuông tại A

      Áp dụng định lý Pi-Ta-Go ta có:

  AB2+AC2=BC2

  122+52=BC2

    BC2=169

   BC=13

Vậy cạnh BC=13 cm

 

 

giùm để tròn 100 điểm giúp mình nhé các bạn

ủng hộ mình đầu năm cho may nhé

CHÚC MỪNG NĂM MỚI

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

24 tháng 2 2019

a) Ta có: \(AB^2+AC^2=4^2+3^2=25=5^2=BC^2\)

\(\Rightarrow\Delta ABC\)là tam giác vuông tại A

b) \(\Delta ABH\)vuông tại H

\(\Rightarrow AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2+3,2^2=4^2\)

\(\Rightarrow AH^2=4^2-3,2^2=5,76\)

\(\Rightarrow AH=2,4cm\)

\(\Rightarrow HC=BC-BH=5-3,2=1,8\)

\(\Rightarrow P_{\Delta ABC}=AC+AH+HC=3+2,4+1,8=7,2cm\)

24 tháng 2 2019

a) Xét tam giác ABC, có :

\(AB^2=4^2=16\)

\(AC^2=3^2=9\)

\(BC^2=5^2=25\)

=>\(AB^2+AC^2=BC^2\)=> tam giác ABC vuông tại A (pi ta go đảo)

Có : BH + HC = BC <=> 3.2 + HC = 5 <=> HC = 1.8

Xét tam giác ABH, có góc H = 90 độ :

=>\(BH^2+AH^2=AB^2\)

<=>\(3.2^2+AH^2=4^2\) 

<=>\(10.24+AH^2=16\)    

<=>\(AH^2=5.76\)

<=>\(AH=\sqrt{5.76}\)

<=>\(AH=2.4\left(cm\right)\)

Chu vi tam giác AHC là : AH + HC + AC = 2.4 + 1.8 + 3 = 7.2 

24 tháng 2 2019

AB = 4  (gt) => AB^2 = 4^2 = 16

AC = 3 (gt) => AC^2 = 3^2 = 9

=> AB^2 + AC^2 = 16 + 9 = 25 

BC = 5 (gt) => BC^2 = 5^2 = 25

=> AB^2 + AC^2 = BC^2 

=> tam giac ABC vuong tai A (dl Pytago dao)

b, AH _|_ BC (gt) => tam giac AHB vuong tai H (dn)

=> AH^2 + HB^2 = AB^2 (dl Pytago) 

HB = 3,2 ; AB = 4 (gt)

=> AH^2 = 4^2 - 3,2^2

=> AH^2 = 16 - 10,24

=> AH^2 = 5,76

=> AH = 2,4 do AH > 0

den tu tu ma tinh chu vi