Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AB^2+AC^2=4^2+3^2=25=5^2=BC^2\)
\(\Rightarrow\Delta ABC\)là tam giác vuông tại A
b) \(\Delta ABH\)vuông tại H
\(\Rightarrow AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2+3,2^2=4^2\)
\(\Rightarrow AH^2=4^2-3,2^2=5,76\)
\(\Rightarrow AH=2,4cm\)
\(\Rightarrow HC=BC-BH=5-3,2=1,8\)
\(\Rightarrow P_{\Delta ABC}=AC+AH+HC=3+2,4+1,8=7,2cm\)
a/
∆ABC vuông tại A, AH, vuông góc BC
=> AB.AH = HB.AC
=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a ) Ta có : AB² + AC² = 8² + 6² = 100
BC² = 10² = 100
=> AB² + AC² = BC²
=> Tam giác ABC vuông tại A ( Định lý Py-ta-go đảo )
b ) Áp dụng định lý Py - ta - go vào ΔABH vuông tại H có :
AH² + BH² = AB²
Hay AH² + 6,4² = 8²
<=> AH² = 64 - 40,96 = 23,04
=> AH = 4,8 cm
AB = 13 cm, BC = 21 cm.
Từ đó, chu vi của tam giác ABC là 54 cm.
Xét tam giác AHC vuông tại H có:
AC2 = HC2 + AH2 (định lý Pytago)
Thay số: 7.52 = HC2 + 4.52
<=> HC2 = 7.52 - 4.52
<=> HC2 = 56,25 - 20,25 = 36 = 6 (cm)
Ta có: BC = BH + HC
Thay số: BC = 1,875 + 6 = 7,875 (cm)
Xét tam giác AHB vuông tại H có:
AB2 = BH2 + AH2 (định lý Pytago)
Thay số: AB2 = 1,8752 + 4,5 2
<=> AB2 = \(\dfrac{225}{64}\) + \(\dfrac{81}{4}\) = \(\dfrac{1521}{64}\)
<=> AB = 4,875 (cm)
Chu vi tam giác ABC là: AB + AC + BC = 4,875 + 7,5 + 7,875
= 20,25 (cm)
Xét \(\Delta ABH\) có AH \(\perp\) BH , theo định lí Pytago ta có :
AB2 = AH2 + BH2
=>AB2 = 4.52 + 1.8752
=>AB2 = 23.765625.......
=>AB = 4.875 (cm)
Có AH \(\perp\) BC, theo định lí Pytago ta có :
HC2 = AH2 + AC2
=> HC2 = 76.5
=> HC = 8.746427842 \(\approx\) 8.8 (cm)
=> BC = 10.675 (cm)
Chu vi \(\Delta ABC\) là : AC + BC + AB = 23.05 (cm)
a) Xét tam giác ABC, có :
\(AB^2=4^2=16\)
\(AC^2=3^2=9\)
\(BC^2=5^2=25\)
=>\(AB^2+AC^2=BC^2\)=> tam giác ABC vuông tại A (pi ta go đảo)
Có : BH + HC = BC <=> 3.2 + HC = 5 <=> HC = 1.8
Xét tam giác ABH, có góc H = 90 độ :
=>\(BH^2+AH^2=AB^2\)
<=>\(3.2^2+AH^2=4^2\)
<=>\(10.24+AH^2=16\)
<=>\(AH^2=5.76\)
<=>\(AH=\sqrt{5.76}\)
<=>\(AH=2.4\left(cm\right)\)
Chu vi tam giác AHC là : AH + HC + AC = 2.4 + 1.8 + 3 = 7.2
AB = 4 (gt) => AB^2 = 4^2 = 16
AC = 3 (gt) => AC^2 = 3^2 = 9
=> AB^2 + AC^2 = 16 + 9 = 25
BC = 5 (gt) => BC^2 = 5^2 = 25
=> AB^2 + AC^2 = BC^2
=> tam giac ABC vuong tai A (dl Pytago dao)
b, AH _|_ BC (gt) => tam giac AHB vuong tai H (dn)
=> AH^2 + HB^2 = AB^2 (dl Pytago)
HB = 3,2 ; AB = 4 (gt)
=> AH^2 = 4^2 - 3,2^2
=> AH^2 = 16 - 10,24
=> AH^2 = 5,76
=> AH = 2,4 do AH > 0
den tu tu ma tinh chu vi