Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ài 2:
a) f(1) = a + b + c + d = 0
Vậy 1 là 1 trong các nghiệm của f(x)
b) f(x)=5x3−7x2+4x−2f(x)=5x3−7x2+4x−2 có tổng các hệ số là : 5 - 7 + 4 - 2 = 0
Theo a) \Rightarrow 1 là 1 trong các nghiệm của f(x).
Bài 3:
f(x)=3x3+4x2+2x+1f(x)=3x3+4x2+2x+1
→f(−1)=−3+4−2+1=0→f(−1)=−3+4−2+1=0
Vậy (-1) là một trong các nghiệm của f(x).
Lời giải:
Bạn hiểu rằng đa thức $f(x)$ có nghiệm $x=a$ khi mà $f(a)=0$
a) Theo đề bài:
\(f(x)=3x^3+4x^2+2x+1\)
\(\Rightarrow f(-1)=3(-1)^3+4(-1)^2+2(-1)+1=0\)
Do đó $x=-1$ là một nghiệm của $f(x)$ (đpcm)
b)
\(f(x)=ax^3+bx^2+cx+d\) nhận $x=-1$ là nghiệm khi và chỉ khi :
\(f(-1)=a(-1)^3+b(-1)^2+c(-1)+d=0\)
\(\Leftrightarrow -a+b-c+d=0\)
\(\Leftrightarrow a+c=b+d\) (đpcm)
Ta có:
\(a+b=c+d\)
\(\Leftrightarrow a+c=b+d\)
\(\Leftrightarrow-a+b-c+d=0\)
\(\Leftrightarrow P\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)
\(\Leftrightarrow-a+b-c+d=0\)
Vậy đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) có 1 trong nghiệm bằng \(-1\) nếu \(a+b=c+d\) (Đpcm)
\(M_{\left(x\right)}=a\cdot x^3+b\cdot x^2+c\cdot x+d\\ M_{\left(0\right)}=d\)
Mà M(x) nguyên nên d nguyên
\(M_{\left(1\right)}=a+b+c+d\) mà d nguyên nên a+b+c nguyên
\(M_{\left(2\right)}=8a+4b+2c+d\)mà d nguyên, a+b+c nguyên nên 6a+2b nguyên
\(M_{\left(-1\right)}=-a+b-c+d\)mà d nguyên, a+b+c nguyên nên b nguyên
Vì b nguyên mà 6a+2b nguyên nên 6a nguyên, 2b nguyên
\(P\left(0\right)=d\inℤ\left(1\right)\)
\(P\left(1\right)=a+b+c+d\inℤ\left(2\right)\)
\(P\left(-1\right)=-a+b-c+d\inℤ\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow2b\inℤ,2a+2c\inℤ\)
\(P\left(2\right)=8a+4b+2c+d=6a+4b+2a+2c+d\inℤ\)
\(\Rightarrow6a\inℤ\)
Vậy \(6a,2b,a+b+c\) và \(d\)là số nguyên
Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
Tính chẵn lẻ của bx2 phụ thuộc vào b
Tính chẵn lẻ của cx phụ thuộc vào c
d là số lẻ
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên
Hơi khó hỉu chút nhé ahihi
Ta có:
\(Q\left(1\right)=a+b+c+d\Rightarrow a+b+c⋮3\left(1\right)\)
\(Q\left(-1\right)=-a+b-c+d⋮3\left(2\right)\)
Cộng (1) với (2), ta có: \(2b+2d⋮3\)
Mà \(d⋮3\Rightarrow2d⋮3\)
\(\Rightarrow2b⋮3\Rightarrow b⋮3\)
\(Q\left(2\right)=8a+4b+2c+d⋮3\)
\(\Rightarrow8a+2c⋮3\)(vì \(4b+d⋮3\))
\(\Rightarrow6a+2a+2c⋮3\)
\(\Rightarrow6a+2\left(a+c\right)⋮3\)
Mà \(a+c⋮3\left(a+b+c⋮3,b⋮3\right)\)
\(\Rightarrow6a⋮3\)
\(\Rightarrow a⋮3\)
\(\Rightarrow c⋮3\)
\(d⋮3\left(gt\right)\)
cho \(f\left(x\right)=ax^3+bx^2+cx+d\)biết \(a+c=b+d\).Chứng minh \(x=-1\)là nghiệm của đa thức f(x)
a) Thu gọn và sắp xếp:
M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1
= x4 + 2x2 +1
b)M(1) = 14 + 2.12 + 1 = 4
M(–1) = (–1)4 + 2(–1)2 + 1 = 4
Ta có M(x)=\(x^4+2x^2+1\)
Vì \(x^4\)và \(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x
Nên \(x^4+2x^2+1>0\)
Tức là M(x)\(\ne0\) với mọi x
Vậy đa thức trên không có nghiệm.
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1=x4+2x2+1
b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
ko biet ban
\(a)\)\(5x^3-7x^2+4x-2=0\)
\(\Leftrightarrow\)\(\left(5x^3-5x^2\right)-\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(\sqrt{2}x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-2\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(2x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(5x^2-2x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x^2-2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\5x^2-2x+2=0\end{cases}}}\)
Vậy \(x=1\) là một trong các nghiệm của đa thức \(f\left(x\right)\)
Hok tốt nhé eiu :>