Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác vuông: ∆ABD và ∆ACE có:
AB = AC (do ∆ABC cân tại A)
∠A chung
⇒ ∆ABD = ∆ACE (cạnh huyền - góc nhọn)
b) Do I là trung điểm của BC (gt)
⇒ IB = IC
Xét ∆ABI và ∆ACI có:
AB = AC (cmt)
AI là cạnh chung
BI = CI (cmt)
⇒ ∆ABI = ∆ACI (c-c-c)
⇒ ∠BAI = ∠CAI (hai góc tương ứng)
⇒ AI là tia phân giác của ∠BAC
c) Do ∆ABI = ∆ACI (cmt)
⇒ ∠AIB = ∠AIC (hai góc tương ứng)
Mà ∠AIB + ∠AIC = 180⁰ (kề bù)
⇒ ∠AIB = ∠AIC = 180⁰ : 2 = 90⁰
⇒ AI ⊥ BC
Sửa đề: c) Từ C vẽ đường thẳng vuông góc với BC và cắt AC tại D. Chứng minh: AI // BD
Bài giải
a) Xét \(\Delta ABI\) và \(\Delta ACI\) có:
AB = AC (gt)
\(BI=CI\) (\(I\) là trung điểm BC)
\(AI\) là cạnh chung
\(\Rightarrow\Delta ABI=\Delta ACI\) (c-c-c)
b) Do \(\Delta ABI=\Delta ACI\) (cmt)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\) (hai góc tương ứng)
\(\Rightarrow AI\) là tia phân giác của \(\widehat{BAC}\)
c) Do \(\Delta ABI=\Delta ACI\) (cmt)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (hai góc tương ứng)
Mà \(\widehat{AIB}+\widehat{AIC}=180^0\) (kề bù)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow AI\perp BC\)
Mà \(BD\perp BC\) (gt)
\(\Rightarrow AI\) // \(BD\) (từ vuông góc đến song song)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>D nằm trên đường trung trực của BM(1)
Ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
=>AD\(\perp\)BM tại I và I là trung điểm của BM
c: Xét ΔKBA và ΔKPM có
KB=KP
\(\widehat{BKA}=\widehat{PKM}\)(hai góc đối đỉnh)
KA=KM
Do đó: ΔKBA=ΔKPM
=>\(\widehat{KBA}=\widehat{KPM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//MP
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔADE có AD=AE
nên ΔADE cân tại A
a: Xét ΔABD và ΔACD co
AB=AC
BD=CD
AD chung
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>góc BAD=góc CAD
=>AD là phân giác của góc BAC
c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
d: Xét ΔDEB vuông tại E và ΔDFC vuông tại F có
DB=DC
DE=DF
=>ΔDEB=ΔDFC
Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath
Đề thiếu rồi bạn
Thiếu gì vậy bạn