Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi hai số tự nhiên cần tìm là : a và b
Ta có : a . b = 42
=> a và b \(\in\){ 42 }
Ư(42) = { 1;2;3;6;7;14;21;42 }
Ta có bảng sau :
a | 1 | 2 | 3 | 6 | 7 | 14 | 21 | 42 |
b | 42 | 21 | 14 | 7 | 6 | 3 | 2 | 1 |
Vậy các cặp số cần tìm (a;b) là : (1;42) ; (2;21) ; ( 3;14) ; (6;7) ; (7;6) ; (14;3) ; ( 21;2) ; ( 42;1)
b,
Ta có : a . b = 30
=> a và b \(\in\){ 30 }
Ư(42) = { 1;2;3;5;6;10;15;30 }
Mà : a < b
Ta có bảng sau :
a | 1 | 2 | 3 | 5 |
b | 30 | 15 | 10 | 6 |
Vậy các cặp số (a;b) là : (1;30) ; (2;15) ; ( 3;10) ; (5;6)
a) 42 = 1 * 42
= 2 * 21
= 3 * 14
= 6 * 7
b) 30= 3 * 10
= 2 *15
= 5 *6
= 1 * 30
Câu 1
A = ab - ba
= (10a + b) - (10b + a)
= 10a + b - 10b -a
= 9a - 9b
= 9(a-b) : hết cho 9
Vậy...
các bn giải giúp mình bài này đi mình đang cần rất gấp giải hết 4 bài lun nha
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
a) P = 1 + 2 + 22+23+24+25+26+27+...+299
P = (1+2) + (22+23)+(24+25)+(26+27)+...+(298+299)
P = 3 + 22(1+2) + 24(1+2) + 26(1+2)+...+298(1+2)
P = 3 + 22.3+24.3+26.3+...+298.3
P = 3(1+22+24+26+...+298) \(\Rightarrow P⋮13\)
b) Ta có : ab = ƯCLN(a;b).BCNN(a;b)=2940
ab = ƯCLN(a;b) .210 = 2940
=> ƯCLN(a;b) =2940 : 210 = 14
=>ƯCLN (\(\frac{a}{14};\frac{b}{14}\)) = 1
=> BCNN (\(\frac{a}{14};\frac{b}{14}\) )=15
Ta có bảng :
Vậy (a;b) \(\in\){(14;210);(42;70)}