K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

a) Ta có: A = (x + y)3 + 2x2 + 4xy + 2y2

    A = 73 + 2(x2 + 2xy + y2)

   A = 343 + 2(x + y)2

 A = 343 + 2. 72

  A = 343 + 98 = 441

b) B = (x - y)3 - x2 + 2xy - y2

=> B = (-5)3 - (x2 - 2xy + y2)

=> B = -125 - (x - y)2

=> B = -125 - (-5)2

=> B = -125 - 25 = -150

11 tháng 6 2016

Viết lại : 

a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)

b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)

11 tháng 6 2016

a) M=(x+y)3+2x2+4xy+2y2

     M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539

b)N=(x-y)3-x2+2xy-y2

    N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150

25 tháng 7 2019

a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=7^3+2\left(x^2+2xy+y^2\right)\)

\(=343+2\left(x+y\right)^2\)

\(=343+2.7^2\)

\(=343+98=441\)

25 tháng 7 2019

b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)

\(=\left(-5\right)^3-\left(x-y\right)^2\)

\(=-125-\left(-5\right)^2\)

\(=-125-25=-150\)

Câu 2: 

\(B=x^2+2x+y^2-2x-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2\cdot7+37=49+37+14=100\)

Câu 3: 

\(C=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2\cdot5+10=25\)

9 tháng 7 2018

a)  \(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)

b)  \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2.7+37=100\)

c)  \(C=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10=25\)

9 tháng 7 2018

a) \(A=x^2+2xy+y^2-4x-4v+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1=-2\)

22 tháng 6 2016

Câu hỏi của đỗ thuan - Toán lớp 8 - Học toán với OnlineMath

12 tháng 10 2021

a) \(x^2+4x+4-y^2\)

\(=\left(x^2+2.x.2+2^2\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

12 tháng 10 2021

\(a,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\\ b=\left(x-2y\right)^2-16=\left(x-2y-4\right)\left(x-2y+4\right)\\ c,=x\left(x^2+2xy+y^2\right)=x\left(x+y\right)^2\\ d,=5\left(x+y\right)-\left(x+y\right)^2=\left(5-x-y\right)\left(x+y\right)\\ e,=x^4\left(x-1\right)+x^2\left(x-1\right)\\ =x^2\left(x^2+1\right)\left(x-1\right)\)

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

a)

*Biểu thức A

Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=x^2+y^2+1+2x-2y-2xy+36\)

\(=\left(x-y+1\right)^2+36\)

Thay x-y=7 vào biểu thức \(A=\left(x-y+1\right)^2+36\), ta được:

\(A=\left(7+1\right)^2+36=8^2+36=100\)

Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-y=7

*Biểu thức B

Ta có: \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)

\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)^2\)

\(=\left(x-y\right)^2\cdot\left(x-y-1\right)\)

Thay x-y=7 vào biểu thức \(B=\left(x-y\right)^2\cdot\left(x-y-1\right)\), ta được:

\(B=7^2\cdot\left(7-1\right)^2=49-36=13\)

Vậy: giá trị của biểu thức \(B=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) tại x-y=7 là 13

b) Ta có: \(C=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\cdot\left(x+2y\right)\cdot1+1+9\)

\(=\left(x+2y-1\right)^2+9\)

Thay x+2y=5 vào biểu thức \(C=\left(x+2y-1\right)^2+9\), ta được:

\(C=\left(5-1\right)^2+9=4^2+9=25\)

Vậy: 25 là giá trị của biểu thức \(C=x^2+4y^2-2x+10+4xy-4y\) tại x+2y=5