K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

a) Vì x,y,z>0 nên a,b,c>0 (1)

Ta có: a+b-c=x+y+y+z-z-x=2y>0

=> a+b>c. Tương tự ta có b+c>a, c+a>b  (2)

Từ (1) và (2) => Tồn tại tam giác mà các cạnh của nó có độ dài 3 cạnh là a,b,c

b) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có a+b>c hay x+y+y+z>z+x   =>  y>0

Tương tự: z,x>0

Vậy có các số dương x,y,z tm

4 tháng 4 2016

caí́́́́  nay thi mk chiu Ă

7 tháng 3 2021

Dễ:C

Vì a:b:c=2:3:4

=> Đặt a=2t, b=3t, c=4t 

Gọi diện tích tam giác đó là S.

Ta có: \(S=\dfrac{a.x}{2}=\dfrac{b.y}{2}=\dfrac{c.z}{2}\)

<=> \(2S=ax=by=cz\)

<=>2t.x=3t.y=4t.z

<=>2x=3y=4z

<=>\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)

Vậy..

10 tháng 3 2019

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{a-b+b-c-a+c}{x+y-z}=\frac{0}{x+y-z}=0\)

\(\Rightarrow\frac{a-b}{x}=0\Leftrightarrow a-b=0\Leftrightarrow a=b\)

\(\frac{b-c}{y}=0\Leftrightarrow b-c=0\Leftrightarrow b=c\)

\(\frac{a-c}{z}=0\Leftrightarrow a-c=0\Leftrightarrow a=c\)

\(\Rightarrow a=b=c\left(đpcm\right)\)

NM
2 tháng 1 2022

a. ta có 

\(\hept{\begin{cases}2a=3b=4c\\a+b-c=21\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}\\a+b-c=21\end{cases}}}\) áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{4}}=\frac{a+b-c}{\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}=\frac{21}{\frac{7}{12}}=36\)\(\Rightarrow\hept{\begin{cases}a=36:2=18\\b=36:3=12\\c=36:4=9\end{cases}}\)

b. ta có : \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{4}=\frac{z}{5}\\x+z-y=20\end{cases}}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+z-y}{2+5-4}=\frac{20}{3}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{40}{3}\\y=\frac{80}{3}\\z=\frac{100}{3}\end{cases}}\)