K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KT
7 tháng 11 2018
\(2a^2+2b^2=5ab\)
<=> \(2a^2+2b^2-5ab=0\)
<=> \(2a^2-4ab-ab+2b^2=0\)
<=> \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)
<=> \(\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)
Do b > a > 0
=> b = 2a
\(A=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)
KT
7 tháng 11 2018
\(2a^2+2b^2=5ab\)
<=> \(2a^2+2b^2-5ab=0\)
<=> \(2a^2-4ab-ab+2b^2=0\)
<=> \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)
<=> \(\left(2a-b\right)\left(a-2b\right)=0\)
<=> \(\orbr{\begin{cases}2a-b=0\left(L\right)\\a-2b=0\end{cases}}\)
=> \(a=2b\)
=> \(A=\frac{a+2b}{2a-b}=\frac{2b+2b}{2.2b-b}=\frac{4b}{3b}=\frac{4}{3}\)
a)
\(VP=\left(x+y\right)^2=\left(x+y\right)\left(x+y\right)=x\left(x+y\right)+y\left(x+y\right)=\)
\(=x^2+xy+xy+y^2=x^2+xy\left(1+1\right)+y^2=x^2+2xy+y^2=VT\)
b)
\(A=!x+y!^2=x^2+2xy+y^2\\\)
\(B=\left(!x!+!y!\right)^2=x^2+2!x!.!y!+y^2\\ \)
\(B-A=2!xy!-2xy=2\left(!xy!-xy\right)\) \(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}xy\ge0\\2.\left(xy-xy\right)=0\end{matrix}\right.\\\left\{\begin{matrix}xy< 0\\2\left(-xy-xy\right)=-4xy>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}xy\ge0\\B-A=0\end{matrix}\right.\\\left\{\begin{matrix}xy< 0\\B-A>0\end{matrix}\right.\end{matrix}\right.\\\) \(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}xy\ge0\\B=A\end{matrix}\right.\\\left\{\begin{matrix}xy< 0\\B>A\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow B\ge A\)
đẳng thức khi xy>=0 => dpcm
c)
\(A=!x-2017!+!x-1!=!x-2017!+!1-x!\ge!\left(x-2017\right)+\left(1-x\right)!=!-2016!=2016\)
Đẳng thức khi (x-2017)(1-x)>=0=> 1<=x<=2017
cảm ơn bạn nha, mà dấu chấm than là giá trị tuyệt đối đúng ko
cái này |...| ak