K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có \(\frac{ax+by}{za+bt}=\frac{bkx+by}{bkz+bt}=\frac{b\left(kx+y\right)}{b\left(kz+t\right)}=\frac{kx+y}{kz+t}\)(1)

\(\frac{cx+yd}{cz+dt}=\frac{dkx+yd}{dkz+dt}=\frac{d\left(kx+y\right)}{d\left(kz+t\right)}=\frac{kx+y}{kz+t}\)(2)

Từ (1) và (2) => đpcm.

b) Đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\Rightarrow a=a_1k;b=b_1k;c=c_1k\)thay vào p;

=> \(p=\frac{a_1kx^2+b_1kx+c_1k}{a_1x^2+b_1x+c_1}=\frac{k\left(a_1x^2+b_1x+c\right)}{a_1x^2+b_1x+c_1}=k\)

Vậy p không phụ thuộc x.

28 tháng 8 2017

cái này làm thế này 

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

13 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2007}}{a_{2008}}=\frac{a_{2008}}{a_1}=\frac{a_1+a_2+...+a_{2007}+a_{2008}}{a_2+a_3+...+a_{2008}+a_1}=1\)

Do đó : \(a_1=a_2=...=a_{2007}=a_{2008}\)

\(\Rightarrow\)\(N=\frac{a_1^2+a_2^2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{a_1^2+a_1^2+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}=\frac{2018a_1^2}{2018^2a_1^2}=\frac{1}{2018}\)

Vậy \(N=\frac{1}{2018}\)

Chúc bạn học tốt ~ 

12 tháng 7 2017

khó quá

12 tháng 7 2017

đúng là khó thiệt

30 tháng 10 2015

Áp dụng tính chất cua dãy tỉ số bằng nhau ta có:

\(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=\frac{ax^2}{a_1x^2}=\frac{bx}{b_1x}=\frac{c}{c_1}=\frac{ax^2+bx+c}{a_1x^2+b_1x+c_1}=P\)

=>\(P=\frac{a}{a_1}\)

=>Giá trị của P phụ thuộc vào a và a1

VậyGiá trị của P không phụ thuộc vào x

30 tháng 10 2015

Câu trả lời của mình đang chờ duyệt

30 tháng 11 2015

Đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)=>\(a=k\cdot a_1\)\(b=k\cdot b_1\)\(c=k\cdot c_1\)

=> \(P=\frac{a\cdot x^2+b\cdot x+c}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot a_1\cdot x^2+k\cdot b_1\cdot x+k\cdot c_1}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot\left(a_1\cdot x^2+b_1\cdot x+c_1\right)}{a_1\cdot x^2+b_1\cdot x+c_1}=k\)

Vậy khi \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)thì \(P\) luôn bằng k với mọi x

(Nhớ tick cho mình nha)