Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{a_1}{a_2}+\frac{a_2}{a_3}+...+\frac{a_{2008}}{a_1}=\frac{a_1+...+a_{12}+...+a_{2008}}{a_2+a_3+...+a_1}=1\)
Từ đó a1 = a2 = a3 = ... = a2008
\(\Rightarrow N=\frac{a^2_1+a^2_2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{2008a^2_1}{\left(2008a_1\right)^2}=\frac{1}{2008}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\)
Ta có: \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (1)
\(\frac{a_2}{a_3}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2)
.............
\(\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\) (2008)
Nhân (1),(2),...,(2008) vế với vế ta có:
\(\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot\cdot\cdot\cdot\frac{a_{2008}}{a_{2009}}=\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\) (đpcm)
Ta có : \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\)
Đặt \(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}=b\)thì \(\frac{a_1}{a_2}=b\left(1\right);\frac{a_2}{a_3}=b\left(2\right);\frac{a_3}{a_4}=b\left(3\right);...;\frac{a_{2008}}{a_{2009}}=b\left(2008\right)\)
Nhân (1),(2),(3),...,(2008) vế theo vế,ta có :
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2008}}{a_{2009}}=b^{2008}\)hay \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\)(đpcm)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+....+a_{2008}}{a_2+a_3+....+a_{2009}}\)
=> \(\left(\frac{a_1}{a_2}\right)^{2008}=\left(\frac{a_2}{a_3}\right)^{2008}=....=\left(\frac{a_{2008}}{a_{2009}}\right)^{2008}=\left(\frac{a_1+a_2+....+a_{2008}}{a_2+a_3+....+a_{2009}}\right)^{2008}\)
\(=\frac{a_1.a_2....a_{2008}}{a_2.a_3....a_{2009}}=\frac{a_1}{a_{2009}}\)
=> \(\left(\frac{a_1+a_2+....+a_{2008}}{a_2+a_3+....+a_{2009}}\right)^{2008}=\frac{a_1}{a_{2009}}\)
=> Đpcm
Có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+....+a_{2009}}\)(tính chất dãy tỉ số bằng nhau)
=> \(\left(\frac{a_1}{a_2}\right)^{2008}=\left(\frac{a_2}{a_3}\right)^{2008}=...=\left(\frac{a_{2008}}{a_{2009}}\right)^{2008}=\left(\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}\)
\(=\frac{a_1.a_2.....a_{2008}}{a_2.a_3.....a_{2009}}=\frac{a_1}{a_{2009}}\)
=> \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+....+a_{2009}}\right)^{2008}\)
=> Đpcm
Ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a2008}{a2009}=\frac{\left(a1+a2+...+a2008\right)}{\left(a2+a3+...+a2009\right)}\)
\(\Rightarrow\left(\frac{a1}{a2}\right)^{2008}=\left(\frac{a2}{a3}\right)^{2008}=..=\left(\frac{a2008}{a2009}\right)^{2008}=\left(\frac{a1+a2+..+a2008}{a2+a3+..+a2009}\right)^{2008}\)
\(\Rightarrow\frac{a1.a2....a2008}{a2.a3...a2009}=\left(\frac{a1+a2+..+a2008}{a2+a3+..+a2009}\right)^{2008}\)
\(\Rightarrow\frac{a1}{a2009}=\left(\frac{a1+a2+..+a2008}{a2+a3+..+a2009}\right)^{2008}\)
Lời giải:
Đặt \(t=\frac{a_1}{a_2}=\frac{a_2}{a_3}.....=\frac{a_{2008}}{a_1}\)
Theo tính chất dãy tỉ số bằng nhau:
\(t=\frac{a_1+a_2+....+a_{2008}}{a_2+2_3+...+a_{2008}+a_1}=\frac{a_1+a_2+...+a_{2008}}{a_1+a_2+...+a_{2008}}=1\)
Do đó:
\(\left\{\begin{matrix} a_1=a_2\\ a_2=a_3\\ .....\\ a_{2007}=a_{2008}\\ a_{2008}=a_1\end{matrix}\right.\) \(\Leftrightarrow a_1=a_2=....=a_{2007}=a_{2008}=k\)
Khi đó:
\(N=\frac{a_1^2+a_2^2+...+a^2_{2007}+a^2_{2008}}{(a_1+a_2+...+a_{2008})^2}=\frac{\underbrace{k^2+k^2+....+k^2}_{2008}}{\underbrace{(k+k+....+k)^2}_{2008}}\)
\(\Leftrightarrow N=\frac{2008k^2}{(2008k)^2}=\frac{1}{2008}\)
Vậy \(N=\frac{1}{2008}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2007}}{a_{2008}}=\frac{a_{2008}}{a_1}=\frac{a_1+a_2+...+a_{2007}+a_{2008}}{a_2+a_3+...+a_{2008}+a_1}=1\)
Do đó : \(a_1=a_2=...=a_{2007}=a_{2008}\)
\(\Rightarrow\)\(N=\frac{a_1^2+a_2^2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{a_1^2+a_1^2+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}=\frac{2018a_1^2}{2018^2a_1^2}=\frac{1}{2018}\)
Vậy \(N=\frac{1}{2018}\)
Chúc bạn học tốt ~