K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét tan giác ABH và ACH

AB=AC (gt)

BH=BC (gt)

AH là cạnh chung

vây tam giác ABH=ACH (c.c.c)

vậy goc AHB=AHC (2 góc tương ứng)

vì AHB+AHC=180 (kề bù)

Mà AHB=AHC

vậy AHB=AHC=180:2=90

vậy AH vuông góc với BC

vi CB vuông góc Cx (gt)

AH vuông góc BC (cmt)

vậy Cx//AH

tam giác vuông EBC có E+B=90

tam giác vuông AHB có BAH+ B=90

Vậy BAH=BEC hay BAH=AEC

15 tháng 1 2017

A B C H I E D

ta có \(\widehat{ABH}+\widehat{HAB}=90^o\)( tam giác HAB vuông tại H )

và \(\widehat{HAB}+\widehat{HAC}=90^o\left(gt\right)\)

suy ra \(\widehat{ABH}=\widehat{HAC}\)( vì cùng phụ với HAB )

b)    xét \(\Delta IAH \)và \(\Delta ICE\)

IA = IC (gt)

IH =IE (gt)

góc HIA = góc EIC ( đối đỉnh )

do đó \(\Delta IAH=\Delta ICE\left(c.g.c\right)\)

suy ra AH = EC ( 2 cạnh tương ứng )

và \(\widehat{HAI}=\widehat{ECA}\)(2 góc tương ứng )

xét \(\Delta HAC\)và \(\Delta ECA\)

AH = EC (cmt)

góc HAI = góc ECA (cmt)

AC là cạnh chung

do đó \(\Delta HAC=\Delta ECA\left(c.g.c\right)\)

suy ra \(\widehat{AHC}=\widehat{CEA}\)(2 góc tương ứng)

mà \(\widehat{AHC}=90^o\Rightarrow\widehat{CEA}=90^o\)

hay \(CE⊥AE\)

2 tháng 10 2019

a) Xét ΔABE và ΔHBE, có:

góc BAE = góc BHE = 90o (gt)

BE: chung

góc ABE = góc HBE ( BE là tia phân giác của góc ABC)

Vậy ΔABE = ΔHBE ( Cạnh huyền - góc nhọn)

b) Ta có: ΔABE = ΔHBE (cm câu a)

=> AB = HB ( 2 cạnh t/ư)

Vậy ΔABH là tam giác cân

c)Ta có: ΔABH cân tại B (cm câu b)

=> góc BAH = góc BHA ( 2 góc đáy của tam giác cân)

Mà: góc BAH = 65o (gt)

=> góc BHA = 65o

Do đó: góc ABH = 50o

Trong ΔABC, có:

góc A + góc B + góc C = 180o ( T/c tổng 3 góc của 1 tam giác)

Hay: 90o + 50o + góc C = 180o

góc C = 180o - 90o - 50o

=> góc C = 40o

Hay góc ACB = 40o (đpcm)

2 tháng 10 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) vuông \(ABE\)\(HBE\) có:

\(\widehat{BAE}=\widehat{BHE}=90^0\)

\(\widehat{ABE}=\widehat{HBE}\) (vì \(BE\) là tia phân giác của \(\widehat{B}\))

Cạnh BE chung

=> \(\Delta ABE=\Delta HBE\) (cạnh huyền - góc nhọn)

b) Theo câu a) ta có \(\Delta ABE=\Delta HBE.\)

=> \(AB=HB\) (2 cạnh tương ứng)

=> \(\Delta ABH\) cân tại \(B.\)

Chúc bạn học tốt!

Giúp đi mn =((

a: Xét ΔBAH vuông tại A và ΔBEH vuông tại E có

BH chung

góc ABH=góc EBH

=>ΔBAH=ΔBEH

=>BA=BE

=>ΔBAE cân tại B

b: Xét ΔBFC có

FE,CA là đường cao

FE cắt CA tại H

=>H là trực tâm

=>HK vuông góc FC

c: Xét tứ giác QAKF có

M là trung điểm chung của QK và AF

=>QAKF là hình bình hành

=>QA//FK

=>Q,E,A thẳng hàng

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

11 tháng 3 2018

a)  Xét 2 tam giác vuông:  tam giác ABH  và   tam giác ACK  có:

AB = AC  (gt)

góc A   chung

suy ra:   tam giác ABH  =   tam giác ACK   (ch-gn)

b)  áp dụng định lí tổng 3 góc của tam giác vào tam giác vuông ABH ta có:

       góc BAH  +    góc ABH   =    90^0

=>   góc ABH  =   90^0  -  góc  BAH  

=>   góc ABH   =   90^0  -  50^0  =  40^0

Tam giác ABC cân tại A   =>  \(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}=65^0\)

=>    góc   HBC   =  25^0

Tương tự:  góc KCB  =   25^0

suy ra:  góc BOC  =  130^0

11 tháng 3 2018

c)  Trên tia đối  MK  lấy  F  sao cho  MF = MK

C/m: tam giác KMB = tam giác FMC  (c.g.c)

=>  MK = MF  =  1/2 KF

C/m: tam giác BKC  =   tam giác FCK  (c.g.c)

=>  BC  =  KF

mà KM = 1/2 KF

=>  KM = 1/2 BC

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a)      Xét \(\Delta ABD\) và \(\Delta CBD\)có:

DA=DC(gt)

BD chung

BA=BC

Vậy \(\Delta ABD = \Delta CBD\)(c.c.c)

b)     Ta có \(\widehat A = \widehat C = {90^o}\)(hai góc tương ứng)

Theo định lí tổng ba góc trong tam giác BCD, ta có:

\(\begin{array}{l}\widehat C + \widehat {CDB} + \widehat {DBC} = {180^o}\\ \Rightarrow {90^o} + {30^o} + \widehat {DBC} = {180^o}\\ \Rightarrow \widehat {DBC} = {60^o}\end{array}\)

Mà \(\Delta ABD = \Delta CBD\) nên \(\widehat {ABD} = \widehat {CBD}\) ( 2 góc tương ứng)

\(\Rightarrow \widehat {ABD} = \widehat {CBD} = {60^o}\\\Rightarrow \widehat {ABC} = \widehat {ABD} + \widehat {CBD} = {60^o} + {60^o} = {120^o}\)

2 tháng 8 2019

a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:

          \(BH:\)cạnh chung

          \(AH=DB\)(gt)

Suy ra \(\Delta AHB=\)\(\Delta DBH\left(2cgv\right)\)

b) Vì  \(\Delta AHB=\)\(\Delta DBH\)(c/m ở câu a) nên \(\widehat{ABH}=\widehat{DHB}\)(hai góc tương ứng)

Mà hai góc này ở vị trí so le trong nên \(AB//DH\)

c) \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=35^0\)nên \(\widehat{ABH}=90^0-35^0=55^0\)

hay \(\widehat{ABC}=55^0\)

\(\Delta ABC\)vuông tại A có \(\widehat{ABC}=55^0\)nên \(\widehat{ACB}=90^0-55^0=35^0\)

Vậy \(\widehat{ACB}=35^0\)