\(^{a^2+b^2}\)

b)    cho x+2y=8.  Tìm GTLN...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

a) \(A=a^2+b^2\ge\frac{\left(a+b\right)^2}{1+1}=\frac{4}{2}=2\)

A min = 2 khi  a =b =1

b) x = 8 -2y  => \(B=xy=\left(8-2y\right)y=-2y^2+8y-8+8=-2\left(y-2\right)^2+8\le8\)

B max = 8 khi y = 2 ; x = 4

2 tháng 10 2019

Áp dụng BĐT Bunhiacopxki :

\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{3^2}{2}=\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{3}{2}\)

____

\(x+2y=8\Leftrightarrow x=8-2y\)

\(B=xy=y\left(8-2y\right)\)

\(\Leftrightarrow B=-2\left(y^2-4y\right)\)

\(\Leftrightarrow B=-2\left(y^2-4y+4-4\right)\)

\(\Leftrightarrow B=-2\left[\left(y-2\right)^2-4\right]=8-2\left(y-2\right)^2\le8\forall y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=4\end{matrix}\right.\)

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

10 tháng 4 2017

Câu 2-Ta có x^2+y^2=5

(x+y)^2-2xy=5

Đặt x+y=S. xy=P

S^2-2P=5

P=(S^2-5)/2

Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2

Rùi tự tính

10 tháng 4 2017

Câu1

Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)

=> P<=4/3(a+b+c)=4/3

Vậy Max p =4/3 khi a=4b=16c 

2 tháng 11 2019

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\)

Tương tự: \(y^2+z^2\ge2yz\)\(x^2+z^2\ge2xz\)

Cộng từng vế của các BDDT trên:

\(2\left(xz+yz+xy\right)\le2\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Leftrightarrow3xy+3yz+3xz\le x^2+y^2+z^2+2xy+2yz+2xz\)

\(\Leftrightarrow3xy+3yz+3xz\le\left(x+y+z\right)^2\)

\(\Leftrightarrow3xy+3yz+3xz\le3^2=9\)

\(\Leftrightarrow xy+yz+xz\le3\)

Vậy \(D_{max}=3\Leftrightarrow x=y=z\)

2 tháng 11 2019

Áp dụng BĐT Cauchy - Schwarz:

\(\left(x^2+y^2+z^2\right)\left(1+1+1\right)\)

\(=\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3^2=9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Vậy \(C_{min}=3\Leftrightarrow x=y=z=1\)

NV
26 tháng 2 2019

\(A=\dfrac{x^2-xy+2y^2}{1}=\dfrac{x^2-xy+2y^2}{x^2+xy+y^2}\)

Với \(y=0\Rightarrow A=1\)

Với \(y\ne0\), chia cả tử và mẫu của vế phải cho \(y^2\Rightarrow A=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{x}{y}+2}{\left(\dfrac{x}{y}\right)^2+\dfrac{x}{y}+1}\)

Đặt \(\dfrac{x}{y}=a\Rightarrow A=\dfrac{a^2-a+2}{a^2+a+1}\Leftrightarrow A.a^2+A.a+A=a^2-a+2\)

\(\Leftrightarrow\left(A-1\right)a^2+\left(A+1\right)a+A-2=0\)

\(\Delta=\left(A+1\right)^2-4\left(A-1\right)\left(A-2\right)\ge0\)

\(\Leftrightarrow-3A^2+14A-7\ge0\Rightarrow\dfrac{7-2\sqrt{7}}{3}\le A\le\dfrac{7+2\sqrt{7}}{3}\)

Vậy \(\left\{{}\begin{matrix}A_{max}=\dfrac{7+2\sqrt{7}}{3}\\A_{min}=\dfrac{7-2\sqrt{7}}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
26 tháng 2 2019

Lời giải:

Vì $x^2+y^2+xy=1$ nên \(A=x^2-xy+2y^2=\frac{x^2-xy+2y^2}{x^2+y^2+xy}\)

\(\Rightarrow A(x^2+y^2+xy)=x^2-xy+2y^2(1)\)

\(\Leftrightarrow x^2(A-1)+x(Ay+y)+(Ay^2-2y^2)=0(*)\)

Xét $A\neq 1$ , ta coi $(*)$ là pt bậc 2 ẩn $x$. Vì đẳng thức $(1)$ tồn tại nên pt $(*)$ có nghiệm

\(\Rightarrow \Delta=(Ay+y)^2-4(Ay^2-2y^2)(A-1)\geq 0\)

\(\Leftrightarrow -3A^2y^2+14Ay^2-7y^2\geq 0\)

\(\Leftrightarrow -3A^2+14A-7\geq 0\)

\(\Leftrightarrow \frac{7-2\sqrt{7}}{3}\leq A\leq \frac{7+2\sqrt{7}}{3}\). So sánh với giá trị $1$ cuối cùng ta thấy \(A_{\min}=\frac{7-2\sqrt{7}}{3}; A_{\max}=\frac{7+2\sqrt{7}}{3}\)

18 tháng 12 2015

 

a) Với a =2 

ta có HPT <=>  \(\int^{x+y=2}_{x^2+y^2=2}\Leftrightarrow\int^{x+y=2}_{\left(x+y\right)^2-2xy=2}\Leftrightarrow\int^{x+y=2}_{xy=1}\Rightarrow x=y=1\) S= { (1;1)}

b) \(HPT\Leftrightarrow\int^{x+y=a}_{\left(x+y\right)^2-2xy=6-a^2}\Leftrightarrow\int^{x+y=a}_{xy=a^2-3}\)

x ; y là nghiệm của pt : X2 -aX+(a2-3) =0 => \(\Delta\)=a2 -4a2 +12 = -3a2 +12 >/0 => -2 </a</ 2 \(F=xy+2\left(x+y\right)=a^2-3+2a=\left(a+1\right)^2-4\ge-4\)=> F min = -4 khi  a =-1 (TM)

\(F=xy+2\left(x+y\right)=a^2-3+2a\le4-3+2.2=5\) khi a =2

19 tháng 11 2019

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)

Tương tự cộng vế theo vế thì 

\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)

bài 4 có trên mạng nha chị.tí e làm cách khác

bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

19 tháng 11 2019

e nhầm đoạn này r

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì 

\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ

Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.