K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2022

Xét đường tròn đương kính BH có : ^BEH = 900 ( góc nt chắn nửa đường tròn ) 

Xét đường tròn đường kính CH có : ^HFC = 900 ( góc nt chắn nửa đường tròn ) 

=> ^AEH = ^AFH = 900

Xét tứ giác AEHF có ^AEH + ^AFH = 1800

mà 2 góc này đối 

Vậy tứ giác AEHF là tứ giác nt 1 đường tròn 

b, Xét tam giác AHB vuông tại H, đường cao HF 

Ta có : AH^2 = AE.AB (1)

Xét tam giác AHC vuông tại H, đường cao HE 

Ta có : AH^2 = AF.AC (2)

Từ (1) ; (2) suy ra AE.AB = AF.AC 

a) Xét (O) có 

ΔAFH nội tiếp đường tròn(A,F,H\(\in\)(O))

AH là đường kính(gt)

Do đó: ΔAFH vuông tại F(Định lí)

Xét (O) có

ΔAEH nội tiếp đường tròn(A,E,H\(\in\)(O))

Do đó: ΔAEH vuông tại E(Định lí)

Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\left(\widehat{BAC}=90^0\right)\)

\(\widehat{AEH}=90^0\)(ΔAEH vuông tại E)

\(\widehat{AFH}=90^0\)(ΔAHF vuông tại F)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

a: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2=AE*AB

=>AE/AC=AF/AB

=>ΔAEF đồng dạng vơi ΔACB

BÀI TẬP 18Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm O đường kính AH cắt AB, AC lầnlượt tại E và F. Biết AB=6cm , BC =10 cma) Tính AC , AHb) Chứng minh tứ giác AEHF là hình chữ nhậtc) Chứng minh AE.AB = AF. ACd) Gọi I, K lần lượt là trung điểm BH và HC. Chứng minh IE, KF là tiếp tuyến của đường tròn (O)BÀI TẬP 19Cho đường tròn (O; R), đường kính AB. Lấy điểm M thuộc (O) sao cho góc ABM nhỏ hơn...
Đọc tiếp

BÀI TẬP 18
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm O đường kính AH cắt AB, AC lần
lượt tại E và F. Biết AB=6cm , BC =10 cm
a) Tính AC , AH
b) Chứng minh tứ giác AEHF là hình chữ nhật
c) Chứng minh AE.AB = AF. AC
d) Gọi I, K lần lượt là trung điểm BH và HC. Chứng minh IE, KF là tiếp tuyến của đường tròn (O)
BÀI TẬP 19
Cho đường tròn (O; R), đường kính AB. Lấy điểm M thuộc (O) sao cho góc ABM nhỏ hơn 45o. Vẽ dây
cung MN ⊥ AB. Tia BM cắt tia NA tại P. Gọi Q là điểm đối xứng với P qua đường thẳng AB. Gọi K là
giao điểm của PQ với AB.
1) Chứng minh các điểm P, K, A, M cùng thuộc một đường tròn.
2) Chứng minh ∆PKM cân.
3) Chứng minh KM là tiếp tuyến của (O).
4) Xác định vị trí của điểm M trên đường tròn (O) để tứ giác PKNM là hình thoi.
BÀI TẬP 20
Cho đường tròn (O; R), đường kính AB. Trên tiếp tuyến tại A của đường tròn (O) lấy điểm C sao cho
AC = 2R. Gọi D là giao điểm của BC với đường tròn (O).
1) Chứng minh: AD là trung tuyến của ∆ABC.
2) Vẽ dây cung AE ⊥ OC tại H. Chứng minh: CE là tiếp tuyến của đường tròn (O).
3) Đường thẳng BE cắt đường thẳng OD tại F. Tính số đo của góc OFB.
4) Gọi K là hình chiếu của điểm E xuống AB, M là giao điểm của EK với BC. Chứng minh: ME = MK.
Giúp mình với ạ. Mình đang cần gấp. Cảm ơn ạ

0
24 tháng 10 2021

a: Xét (I) có 

ΔAHC nội tiếp đường tròn

AC là đường kính

Do đó: ΔAHC vuông tại H

hay AH\(\perp\)BC

16 tháng 1

1) Ta có: \(\Delta AHF\) nội tiếp đường tròn (D) có AH là đường kính 

\(\Rightarrow\widehat{AFH}=90^o\) (1) 

\(\Delta AHE\) nội tiếp đường tròn (D) có AH là đường kính 

\(\Rightarrow\widehat{AEH}=90^o\) (2) 

Mà: \(\widehat{EAF}=90^o\left(gt\right)\) (3) 

Từ (1), (2), (3) \(\Rightarrow\) Tứ giác AEHF có 3 góc vuông nên là hình chữ nhật 

2) Áp dụng hệ thức lượng cho ΔABH có đường cao HE ta có:

\(AE\cdot AB=AH^2\) (4) 

Áp dụng hệ thức lượng cho ΔACH có đường cao HF ta có:

\(AF\cdot AC=AH^2\) (5) 

Từ (4) và (5) ta có: \(AE\cdot AB=AF\cdot AC\left(đpcm\right)\)

19 tháng 4 2023

a) Ta có : \(\hat{A}=90^o\) (góc nội tiếp chắn nửa đường tròn (O), đường kính BC).

\(\hat{E}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

\(\hat{F}=90^o\) (góc nội tiếp chắn nửa đường tròn (I), đường kính AH).

Suy ra, AHEF là hình chữ nhật (dấu hiệu nhận biết) (điều phải chứng minh).

b) Ta có : \(\hat{HAC}+\hat{C}=90^o\) (hai góc phụ nhau) và \(\hat{ABC}+\hat{C}=90^o\) (hai góc phụ nhau)

\(\Rightarrow\hat{HAC}=\hat{ABC}\) (điều phải chứng minh).

Mặt khác : \(\hat{AEF}=\hat{AHF}\) (hai góc nội tiếp đường tròn (I) cùng chắn cung AF).

Và : \(\left\{{}\begin{matrix}\hat{AHF}+\hat{HAC}=90^o\\\hat{C}+\hat{HAC}=90^o\end{matrix}\right.\Rightarrow\hat{AHF}=\hat{C}\). Suy ra : \(\hat{AEF}=\hat{C}\).

Lại có : \(\hat{AEF}+\hat{BEF}=180^o\) (hai góc kề bù) \(\Rightarrow\hat{C}+\hat{BEF}=180^o\).

Mà trong tứ giác BEFC, hai góc trên lại đối nhau. Do đó, tứ giác BEFC nội tiếp được một đường tròn (điều phải chứng minh).

26 tháng 11 2022

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật