Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1;
A= 2+2^2+2^3+...+2^60= (2+2^2)+(2^3+2^4)+...+(2^59+2^60)
= (2+2^2).(1+2^2+...+2^58)=6.(1+2^2+...+2^58) chia hết cho 3 (ĐPCM)
A= 2+2^2+2^3+...+2^60= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
= (2+2^2+2^3).(1+2^3+...+2^57)= 14.(1+2^3+...+2^57) chia hết cho 7(ĐPCM)
Tương tự chứng minh A chai hết cho 15 ta có
A= (2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)
= (2+2^2+2^3+2^4).(1+2^4+...+2^56)= 30.(1+2^4+...+2^56) chia hết cho 15 (ĐPCM)
A=2.(1+2)+2^3(1+2)+.................+2^59(1+2)
A=2.3+2^3.3+..............+2^59.3
A+3(2+.....+2^59) chia hết cho 3
A=2(1+2+2^2)+...................+2^58(1+2+4)
A=2.7+.........+2^58.7
A=7(2+........+2^58) chia hết cho 7
A=2(1+2+4+8)+...........+2^57(1+2+4+8)
A+2.15+.....+2^57.15
A=15(2+......+2^57) chia hết cho 15
bài hai thì tự đi tìm hiểu
A=2+2^2+...........+2^60
c\m c\h cho 3:2+2^2+....+2^60=2.(1+2)+........+2^59(1+2)
=2.3+.........+2^59.3
=(2+...+2^59).3
=>A chia hết cho 3
cau tiếp tuong tu
3
Ta chứng minh A chia hết cho 3:
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2.(1+2)+2^3.(1+2)+...+2^59.(1+2)
=2.3+2^3.3+...+2^59.3
=3.(2+2^3+...+2^59) chia hết cho 3
Ta chứng minh A chia hết cho 7
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2.(1+2+4)+2^4.(1+2+4)+...+2^58.(1+2+4)
=2.7+2^4.7+...+2^58.7
=7.(2+2^4+...+2^58) chia hết cho 7
Ta chứng minh A chia hết cho 15
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)
=2.(1+2+4+8)+2^5.(1+2+4+8)+....+2^57.(1+2+4+8)
=2.15+2^5.15+..+2^57.15
=15.(2+2^5+...+2^57) chia hết cho 15
a) \(C=5+5^2+5^3+...+5^8\)
\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)
\(C=\left(5+25\right)+5^2\cdot\left(5+25\right)+5^4\cdot\left(5+25\right)+5^6\cdot\left(5+25\right)\)
\(C=30+5^2\cdot30+5^4\cdot30+5^6\cdot30\)
\(C=30\cdot\left(1+5^2+5^4+5^6\right)\)
Vậy C chia hết cho 30
b) \(D=2+2^2+2^3+...+2^{60}\)
\(D=2\left(1+2\right)+2^2\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(D=2\cdot3+2^2\cdot3+...+2^{59}\cdot3\)
\(D=3\cdot\left(2+2^2+...+2^{59}\right)\)
Vậy D chia hết cho 3
\(D=2+2^2+2^3+...+2^{60}\)
\(D=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(D=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(D=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy D chia hết cho 7
\(D=2+2^2+2^3+...+2^{60}\)
\(D=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(D=2\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)
\(D=2\cdot15+2^5\cdot15+...+2^{57}\cdot15\)
\(D=15\cdot\left(2+2^5+...+2^{57}\right)\)
Vậy D chia hết cho 15
a) C = 5 + 5² + 5³ + ... + 5⁸
= (5 + 5²) + 5².(5 + 5²) + 5⁴.(5 + 5²) + 5⁶.(5 + 5²)
= 30 + 5².30 + 5⁴.30 + 5⁶.30
= 30.(1 + 5² + 5⁴ + 5⁶) ⋮ 30
Vậy C ⋮ 30
b) *) Chứng minh D ⋮ 3
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Vậy D ⋮ 3 (1)
*) Chứng minh D ⋮ 7
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy D ⋮ 7 (2)
*) Chứng minh D ⋮ 15
D = 2 + 2² + 2³ + ... + 2⁶⁰
= 2.(1 + 2 + 2² + 2³) + 2⁵.(1 + 2 + 2² + 2³) + 2⁵⁷.(1 + 2 + 2² + 2³)
= 2.15 + 2⁵.15 + ... + 2⁵⁷.15
= 15.(2 + 2⁵ + ... + 2⁵⁷) ⋮ 15
Vậy D ⋮ 15 (3)
Từ (1), (2), (3) suy ra D chia hết cho lần lượt 3; 7 và 15
A = 2 + 22 + 23 + .... + 260
= (2 + 22) + (23 + 24) + .... + (259 + 260)
= 2.(1 + 2) + 23.(1 + 2) + .... + 259.(1 + 2)
= 2.3 + 23.3 + .... + 259.3
= 3.(2 + 23 + ..... +259) chia hết cho 3
ta có: A= 2+2^2 +2^3 +............+2^60
=(2+2^2) + (2^3+2^4)+.............+ (2^59+2^60)
=2.(1+2)+ 2^3.(1+2)+.....................+2^59.(1+2)
=2.3+2^3.3+ .............+2^59.3
=3.(2+2^3+.............+2^59)
vậy suy ra A chia het cho 3
Hai trường hợp còn lại tương tự nha bạn!
ta có: A= 2+2^2 +2^3 +............+2^60
=(2+2^2) + (2^3+2^4)+.............+ (2^59+2^60)
=2.(1+2)+ 2^3.(1+2)+.....................+2^59.(1+2)
=2.3+2^3.3+ .............+2^59.3
=3.(2+2^3+.............+2^59)
vậy suy ra A chia het cho 3
Hai trường hợp còn lại làm tương tự
a) A = 2 + 22 + 23 + 24 + ... + 260 ( có 60 số hạng )
=> A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 ) ( có đủ 3 nhóm )
=> A = ( 2 + 22 ) + 22 . ( 2 + 22 ) + ... + 258 . ( 2 + 22 )
=> A = 6 + 22 . 6 + ... + 258 . 6
=> A = ( 1 + 22 + ... + 258 ) . 6 mà 6 ⋮ 3
=> A ⋮ 6 và A ⋮ 3
Vậy A ⋮ 3
A = 2 + 22 + 23 + … + 260
=> A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + … + ( 258 + 259 + 260 )
=> A = 2 . (1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + … + 258 . ( 1 + 2 + 22 )
=> A = 2 . 7 + 24 . 7 + ... + 258 . 7
=> A = ( 2 + 24 + ... + 258 ) . 7
⇒ A ⋮ 7
Vậy A ⋮ 7