Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
\(\overline{52ab}:5R2\Rightarrow b\in\left\{2;7\right\}\\ \forall b=2\Rightarrow\overline{52a2}⋮9\\ \Rightarrow a+9⋮9\\ \Rightarrow a\in\left\{0;9\right\}\\ \forall b=7\Rightarrow\overline{52a7}⋮9\\ \Rightarrow14+a⋮9\\ \Rightarrow a=4\)
Vậy \(\overline{52ab}\in\left\{5202;5292;5247\right\}\)
Để 134xy chia hết cho 5 thì y = 0 hoặc 5
Nếu y = 0 thì 1 + 3 + 4 + x + 0 chia hetes cho 9
=> 8 + x chia hết cho 9
=> x = 1
Nếu y = 5 thì 1 + 3 + 4 + x + 5 chia hết cho 9
=> 13 + x chia hết cho 9
=> x = 5
Vì 134xy chia hết cho 5
=> \(y\in\left\{0;5\right\}\)
Nếu y = 0 thì x = 1
Nếu y = 5 thì x = 5
Vậy \(\left(x;y\right)\in\left\{\left(0;1\right),\left(5;5\right)\right\}\)
Tương tự những cái còn lại nhé em, dựa vào dấu hiệu chia hết của mỗi số đó. J ko bik hỏi lại
Để 3a7b chia 5 dư 2 => b=2 hoặc b=7
TH1: Với b=2 => 3+7+2=12. Để số đó chia hết cho 9 thì a=18-12=6
TH2: Với b=7 => 3+7+7=17. Để số đó chia hết cho 9 thì a=18-17=1
Vậy có 2 cặp số (a;b) thoả mãn là (6;2) và (1;7)
\(A=1+2+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=2+2^2+2^3+...+2^{2016}-1-2-2^2-....-2^{2015}\)
\(A=2^{2016}-1\)
\(=>A=B\)