K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 7 2023

Các công trình kiến trúc, đồ vật có trong hình 30 có mặt bên là hình tam giác.

Tham khảo:

loading...

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

Vì các cạnh bên của hình lăng trụ ABCD.A'B'C'D' đôi một song song nên AA", BB", CC" đôi một song song.

Mặt phẳng (ABCD) song song với (A"B"C"D") (do cùng song song với (A'B'C'D')) nên ABCD.A"B"C"D" là hình lăng trụ tứ giác.

a: Các mặt bên của hình lăng trụ này vừa là hình chữ nhật, vừa vuông góc với đáy

b: Các mặt bên của hình lăng trụ này vừa là hình chữ nhật, vừa vuông góc với đáy

c: Có 4 mặt bên là hình chữ nhật

d: Có tất cả là 6 mặt là hình chữ nhật

đều có một cặp mặt phẳng đối diện song song với nhau

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}M \in AB \subset \left( {ABB'A'} \right)\\M \in \left( {OMN} \right)\end{array} \right\} \Rightarrow M \in \left( {OMN} \right) \cap \left( {ABB'A'} \right)\\\left. \begin{array}{l}N \in A'B' \subset \left( {ABB'A'} \right)\\N \in \left( {OMN} \right)\end{array} \right\} \Rightarrow N \in \left( {OMN} \right) \cap \left( {ABB'A'} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {ABB'A'} \right) = MN\end{array}\)

\(M\) là trung điểm của \(AB\)

\(N\) là trung điểm của \(A'B'\)

\( \Rightarrow MN\) là đường trung bình của hình bình hành \(ABB'A'\)

\( \Rightarrow MN\parallel AA'\parallel BB'\parallel CC'\parallel DD'\)

\(\left. \begin{array}{l}O \in \left( {OMN} \right) \cap \left( {C{\rm{DD'C'}}} \right)\\MN\parallel C{\rm{D}}\\MN \subset \left( {OMN} \right)\\C{\rm{D}} \subset \left( {C{\rm{DD'C'}}} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {C{\rm{DD'C'}}} \right)\) là đường thẳng \(d\) đi qua \(O\), song song với \(MN\) và \(C{\rm{D}}\).

Gọi \(P = d \cap C'D',Q = d \cap CD \Rightarrow \left( {OMN} \right) \cap \left( {C{\rm{DD'C'}}} \right) = PQ\)

\(\begin{array}{l}\left. \begin{array}{l}M \in AB \subset \left( {ABC{\rm{D}}} \right)\\M \in \left( {OMN} \right)\end{array} \right\} \Rightarrow M \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\\left. \begin{array}{l}Q \in C{\rm{D}} \subset \left( {ABC{\rm{D}}} \right)\\Q \in d \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow Q \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right) = MQ\end{array}\)

\(\begin{array}{l}\left. \begin{array}{l}N \in A'B' \subset \left( {A'B'C'{\rm{D'}}} \right)\\N \in \left( {OMN} \right)\end{array} \right\} \Rightarrow N \in \left( {OMN} \right) \cap \left( {A'B'C'{\rm{D'}}} \right)\\\left. \begin{array}{l}P \in C'{\rm{D'}} \subset \left( {A'B'C'{\rm{D'}}} \right)\\P \in d \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow P \in \left( {OMN} \right) \cap \left( {A'B'C'{\rm{D'}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {A'B'C'{\rm{D'}}} \right) = NP\end{array}\)

Gọi \(E = MQ \cap BC,F = MQ \cap AD,G = NP \cap B'C',H = NP \cap A'D'\)

\(\begin{array}{l}\left. \begin{array}{l}E \in BC \subset \left( {BCC'B'} \right)\\E \in MQ \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow E \in \left( {OMN} \right) \cap \left( {BCC'B'} \right)\\\left. \begin{array}{l}G \in B'C' \subset \left( {BCC'B'} \right)\\G \in NP \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow G \in \left( {OMN} \right) \cap \left( {BCC'B'} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {BCC'B'} \right) = EG\end{array}\)

\(\begin{array}{l}\left. \begin{array}{l}F \in A{\rm{D}} \subset \left( {A{\rm{DD'A'}}} \right)\\F \in MQ \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow F \in \left( {OMN} \right) \cap \left( {A{\rm{DD'A'}}} \right)\\\left. \begin{array}{l}H \in A'D' \subset \left( {A{\rm{DD'A'}}} \right)\\H \in NP \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow H \in \left( {OMN} \right) \cap \left( {A{\rm{DD'A'}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {A{\rm{DD'A'}}} \right) = FH\end{array}\)

12 tháng 10 2018

Chọn C.

Gọi I là trung điểm DC

Theo giả thiết ta có 

Suy ra 

3 tháng 1 2020

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có mặt phẳng (AA', DD') song song với mặt phẳng (BB', CC'). Mặt phẳng (MNP) cắt hai mặt phẳng nói trên theo hai giao tuyến song song.

Nếu gọi Q là điểm trên cạnh BB' sao cho NQ // PM thì Q là giao điểm của đường thẳng BB' với mặt phẳng (MNP)

Nhận xét. Ta có thể tìm điểm Q bằng cách nối P với trung điểm I của đoạn MN và đường thẳng PI cắt BB' tại Q.

b) Vì mặt phẳng (AA', BB') song song với mặt phẳng (DD', CC') nên ta có MQ // PN. Do đó mặt phẳng (MNP) cắt hình hộp theo thiết diện MNPQ là một ình bình hành.

Giả sử P không phải là trung điểm của đoạn DD'. Gọi H = PN ∩ DC , K = MP ∩ AD. Ta có D = HK là giao tuyến của mặt phẳng (MNP) với mặt phẳng (ABCD) của hình hộp.

Chú ý rằng giao điểm E = AB ∩ MQ cũng nằm trên giao tuyến d nói trên. Khi P là trung điểm của DD' mặt phẳng (MNP) song song với mặt phẳng (ABCD).

27 tháng 5 2019

Giải bài 9 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Giao điểm M của CD và mp(C’AE).

Trong mp(ABCD), d cắt CD tại M, ta có:

+ M ∈ CD

+ M ∈ d ⊂ (C’AE) ⇒ M ∈ (C’AE)

Vậy M là giao điểm của CD và mp(C’AE).

b) + Trong mặt phẳng (SCD), gọi giao điểm của MC’ và SD là N.

N ∈ MC’ ⊂ (C’AE) ⇒ N ∈ (C’AE).

N ∈ SD ⊂ (SCD) ⇒ N ∈ (SCD)

⇒ N ∈ (C’AE) ∩ (SCD).

⇒ (C’AE) ∩ (SCD) = C’N.

+ (C’AE) ∩ (SCB) = C’E.

+ (C’AE) ∩ (SAD) = AN.

+ (C’AE) ∩ (ABCD) = AE

Vậy thiết diện của hình chóp cắt bởi mặt phẳng (C’AE) là tứ giác C’NAE