A C B E E là trung điểm của BC so sánh tam giác ABE và ACE

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

Xét tam giác ABE vuông tại E và tam giác ACE vuông tại E

Có : EB=EC(E là trung điểm BC)

        AE là cạnh chung

suy ra tam giác ABE = tam giác ACE ( 2 cạnh góc vuông )

16 tháng 12 2016

a) t/g AHC vuông tại H có: ACH + CAH = 90o (1)

t/g AHB vuông tại H có: ABH + BAH = 90o (2)

Từ (1) và (2) lại có: ACH = ABH (gt) suy ra CAH = BAH

t/g ACH = t/g ABH ( cạnh góc vuông và góc nhọn kề)

=> AC = AB (2 cạnh tương ứng) (đpcm)

b) t/g ACH = t/g ABH (cmt)

=> ACH = ABH (2 góc tương ứng)

Lại có: ACH + ACE = ABH + ABD = 180o

=> ACE = ABD

t/g ACE = t/g ABD (c.g.c) (đpcm)

c) Có: EC = BD (gt)

=> EC + BC = BD + BC

=> BE = CD

t/g ACD = t/g ABE (c.g.c) (đpcm)

d) t/g ACH = t/g ABH (câu a)

=> CH = BH (2 cạnh tương ứng)

Mà: CE = BD (gt)

Nên CH + CE = BH + BD

=> HE = HD

t/g AHE = t/g AHD (2 cạnh góc vuông)

=> EAH = DAH (2 góc tương ứng)

=> AH là phân giác DAE (đpcm)

16 tháng 12 2016

bái phục......bái phục

30 tháng 5 2020

em chịu

13 tháng 2 2020

Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33

A B C M K D E

a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)

\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )

Mà : \(MC=MB\) ( Do M là trung điểm của BC )

\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )

b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )

Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)

\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)

Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)

\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)

c)  Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :

+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)

+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)

\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )

Nên : E là trung điểm của KD ( đpcm )

d) Ta có : \(KD=10\Rightarrow KE=5\)

Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)

\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)

Vậy : \(BC=16cm\)