A B C m n p

tính m+n+p

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

\(a;M\left(x\right)+N\left(x\right)=\left(2x^3-5x^2+x-2\right)+\left(-3x^3+5x^2-x+1\right)\)

                                \(=2x^3-5x^2+x-2-3x^3+5x^2-x+1\)

                                  \(=-x^3-1\)

\(b;M\left(x\right)-N\left(x\right)=\left(2x^3-5x^2+x^2-2\right)-\left(-3x^3+5x^2-x+1\right)\)

                                  \(=2x^3-5x^2+x-2+3x^3-5x^2+x-1\)

                                   \(=5x^3-10x^2+2x-3\)

\(c;3N\left(x\right)-2M\left(x\right)=3\left(2x^3-5x^2+x-2\right)-2\left(-3x^3+5x^2-x+1\right)\)

                                      \(=6x^3-15x^2+3x-6+6x^3-10x^2+2x-2\)

                                       \(=12x^3-25x^2+5x-8\)

8 tháng 10 2017

Do theo đề bài: \(\frac{a}{m}=\frac{b}{n}=\frac{c}{p}=-4\)
\(\Rightarrow\left(\frac{a}{m}\right)^3=\left(\frac{b}{n}\right)^3=\left(\frac{c}{p}\right)^3=\left(-4\right)^3\)
\(\Rightarrow\frac{a^3}{m^3}=\frac{b^3}{n^3}=\frac{c^3}{p^3}=-64\)
\(\Rightarrow\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=64\)    ( 1 )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{-a^3}{m^3}=\frac{3\cdot b^3}{\left(-3\right)\cdot n^3}=\frac{\left(-2\right)\cdot c^3}{2\cdot p^3}=\frac{\left(-a^3\right)+3\cdot b^3+\left(-2\right)\cdot c^3}{m^3+\left(-3\right)\cdot n^3+2\cdot p^3}=\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}\)    ( 2 )
Từ ( 1 ) và ( 2 ) suy ra: \(\frac{-a^3+3\cdot b^3-2\cdot c^3}{m^3-3.n^3+2\cdot p^3}=64\)

19 tháng 4 2017

Giải bài 35 trang 40 SGK Toán 7 Tập 2 | Giải toán lớp 7

19 tháng 9 2018

M + N = \(x^2-2xy+y^2\)+\(y^2+2xy+x^2+1\)

= \(\left(x^2+x^2\right)+\left(-2xy+2xy\right)+\left(y^2+y^2\right)+1\)

= \(2x^2+2y^2+1\)

M - N = \(x^2-2xy+y^2-y^2+2xy+1\)

= \(\left(x^2+x^2\right)+\left(-2xy+2xy\right)+\left(y^2-y^2\right)+1\)

= \(2x^2+1\)

a) vì a<b => 2a<a + b ; c < d => 2c < c + d ; m<n => 2m< m + n

=> 2a + 2c + 2m = 2 (a + c + m) < ( a + b + c + m + n) 

=> \(\frac{a+c+m}{a+b+c+m+n}< \frac{1}{2}\left(đccm\right)\)

t i c k nha!! 4545654756678769780

13 tháng 6 2016

Ta có:\(1\le a;2\le b;3\le c;4\le d;5\le m;6\le n\)

\(\Rightarrow\hept{\begin{cases}a+c+m\ge1+3+5=9\\a+b+c+m+n=1+2+3+5+6=17\end{cases}}\)

\(\Rightarrow\frac{a+c+m}{a+b+c+m+n}\ge\frac{9}{17}>\frac{9}{18}=\frac{1}{2}\)

b,Tương tự

18 tháng 5 2017

\(M\left(x\right)+N\left(x\right)\)

\(=5x^3-x^2-4+2x^4-2x^2+2x+1\)

\(=2x^4+5x^3-3x^2+2x-3\)

\(M\left(x\right)-N\left(x\right)\)

\(=5x^3-x^2-4-\left(2x^4-2x^2+2x+1\right)\)

\(=5x^3-x^2-4-2x^4+2x^2-2x-1\)

\(=-2x^4+5x^3+x^2-2x-5\)

\(M\left(x\right)+P\left(x\right)=N\left(x\right)\)

\(\Rightarrow P\left(x\right)=N\left(x\right)-M\left(x\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-\left(5x^3-x^2-4\right)\)

\(\Rightarrow P\left(x\right)=2x^4-2x^2+2x+1-5x^3+x^2+4\)

\(\Rightarrow P\left(x\right)=2x^4-5x^3-x^2+2x+5\)

15 tháng 1 2017

Ta có :

\(a< b\Rightarrow2a< a+b\) \(\left(1\right)\)

\(c< d\Rightarrow2c< c+d\) \(\left(2\right)\)

\(m< n\Rightarrow2m< m+n\) \(\left(3\right)\)

Cộng ba bất đẳng thức cùng chiều \(\left(1\right),\left(2\right),\left(3\right)\) , ta được :

\(2a+2c+2m< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

Vậy : \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)