Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^5+2x^4+4x^3+8x^2+16x-2x^4-4x^3-8x^2-16x-32\)
\(=x^5-32\)(1)
Thay x=3 vào (1) ta được:
\(A=3^5-32=243-32=211\)
a)(x+2).(x+3)-(x-2).(x+5)=10
( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10
x^2 +3x+2x+6-x^2 -5x+2x+10-10=0
2x+6=0
2x=-6
x=-3
\(B=B_1+B_2+...+B_{2016}\)
\(B_1=\dfrac{\sqrt{x+1}-\sqrt{x}}{\left(\sqrt{x}+\sqrt{x+1}\right)\left(\sqrt{x+1}-\sqrt{x}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x}}{x+1-x}\)
\(B_1=\sqrt{x+1}-\sqrt{x}\)
\(B_2=\sqrt{x+2}-\sqrt{x+1}\)
\(B_3=\sqrt{x+3}-\sqrt{x+2}\)
...
\(B_{2015}=\sqrt{x+2015}-\sqrt{x+2014}\)
\(B_{2016}=\sqrt{x+2016}-\sqrt{x+2015}\)
\(B=\sqrt{x+2016}-\sqrt{x}\)
\(B\left(2017\right)=\sqrt{2017+2016}-\sqrt{2017}\)
Copy có khác, ko đọc đc j!!! ʌl
Câu 3:
1)
a) Ta có: 3x−2=2x−33x−2=2x−3
⇔3x−2−2x+3=0⇔3x−2−2x+3=0
⇔x+1=0⇔x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y
⇔27+2y=27+4y⇔27+2y=27+4y
⇔27+2y−27−4y=0⇔27+2y−27−4y=0
⇔−2y=0⇔−2y=0
hay y=0
Vậy: y=0
c) Ta có: 7−2x=22−3x7−2x=22−3x
⇔7−2x−22+3x=0⇔7−2x−22+3x=0
⇔−15+x=0⇔−15+x=0
hay x=15
Vậy: x=15
d) Ta có: 8x−3=5x+128x−3=5x+12
⇔8x−3−5x−12=0⇔8x−3−5x−12=0
⇔3x−15=0⇔3x−15=0
⇔3(x−5)=0⇔3(x−5)=0
Vì 3≠0
nên x-5=0
hay x=5
Vậy: x=5
a) 3x - 2 = 2x - 3
\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0
\(\Leftrightarrow\) x + 1 = 0
\(\Rightarrow\) x = -1
b) 3 - 4y + 24 + 6y = y + 27 + 3y
\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0
\(\Leftrightarrow\) -2y = 0
\(\Rightarrow\) y = 0
c)7 - 2x = 22 - 3x
\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0
\(\Leftrightarrow\) -15 + x = 0
\(\Rightarrow\) x = 15
d) 8x - 3 = 5x + 12
\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0
\(\Leftrightarrow\)3x -15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Rightarrow\) x = 5
e) x - 12 + 4x = 25 + 2x - 1
\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0
\(\Leftrightarrow\) 3x - 36 = 0
\(\Leftrightarrow\) 3x = 36
\(\Rightarrow\) x = 12
f ) x + 2x + 3x - 19 = 3x + 5
\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0
\(\Leftrightarrow\)3x - 24 = 0
\(\Leftrightarrow\) 3x = 24
\(\Rightarrow\) x = 8
g) 11+ 8x - 3 = 5x - 3 +x
\(\Leftrightarrow\)8x + 8 = 6x - 3
\(\Leftrightarrow\)8x - 6x = -3 - 8
\(\Leftrightarrow\)2x = -11
\(\Rightarrow\)x = \(-\frac{11}{2}\)
h) 4 - 2x +15 = 9x + 4 -2
\(\Leftrightarrow\)19 - 2x = 7x + 4
\(\Leftrightarrow\)-2x - 7x = 4 - 19
\(\Leftrightarrow\)-9x = -15
\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)
a)\(B=\left(\frac{x-2}{x^2+2x}+\frac{1}{x+2}\right).\frac{x+1}{x-1}=\left(\frac{x^2-2}{x^2+2x}+\frac{x}{x^2+2x}\right).\frac{x+1}{x-1}=\frac{x^2+x-2}{x^2+2x}.\frac{x+1}{x-1}\)
\(=\frac{x^2-x+2x-2}{x\left(x+2\right)}.\frac{x+1}{x-1}=\frac{x\left(x-1\right)+2\left(x-1\right)}{x\left(x+2\right)}.\frac{x+1}{x-1}=\frac{\left(x-1\right)\left(x+2\right)}{x\left(x+2\right)}.\frac{x+1}{x-1}=\frac{x+1}{x}\)
b)\(2B=2x+5\Leftrightarrow2.\frac{x+1}{x}=2x+5\Leftrightarrow\frac{2x+2}{x}=2x+5\Leftrightarrow2x+2=2x^2+5x\)
\(\Leftrightarrow0=2x^2+3x-2\Leftrightarrow2x^2+4x-x-2=0\Leftrightarrow2x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-2\end{cases}}\)