Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\lim\dfrac{\left(\dfrac{1}{3}\right)^n+1}{\dfrac{\sqrt{4-a^2}}{3^n}+a}=\dfrac{1}{a}\)
Giới hạn đã cho là hữu hạn khi: \(\left\{{}\begin{matrix}a^2\le4\\a\ne0\end{matrix}\right.\) \(\Rightarrow a=\left\{-2;-1;1;2\right\}\)
a) \(n = 100 \Leftrightarrow \left| {{u_{100}}} \right| = \left| {\frac{{{{\left( { - 1} \right)}^{100}}}}{{100}}} \right| = \frac{1}{{100}} = 0,01\)
\(n = 1000 \Leftrightarrow \left| {{u_{1000}}} \right| = \left| {\frac{{{{\left( { - 1} \right)}^{1000}}}}{{1000}}} \right| = \frac{1}{{1000}} = 0,001\)
Như vậy ta có thể điền vào bảng như sau:
b) \(\left| {{u_n}} \right| < 0,01 \Leftrightarrow \left| {\frac{{{{\left( { - 1} \right)}^n}}}{n}} \right| < 0,01 \Leftrightarrow \frac{1}{n} < 0,01 \Leftrightarrow n > 100\)
Vậy \(\left| {{u_n}} \right| < 0,01\) khi \(n > 100\).
\(\left| {{u_n}} \right| < 0,001 \Leftrightarrow \left| {\frac{{{{\left( { - 1} \right)}^n}}}{n}} \right| < 0,001 \Leftrightarrow \frac{1}{n} < 0,001 \Leftrightarrow n > 1000\)
Vậy \(\left| {{u_n}} \right| < 0,001\) khi \(n > 1000\).
c) Dựa vào trục số ta thấy, khoảng cách từ điểm \({u_n}\) đến điểm 0 trở nên rất bé khi \(n\) trở nên rất lớn.
Giới hạn đã cho bằng \(+\infty\)
\(\Leftrightarrow a^2-1\ge0\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-1\end{matrix}\right.\)
Có vô số giá trị nguyên
\(B=\dfrac{0!}{2!}+\dfrac{1!}{3!}+\dfrac{2!}{4!}+...+\dfrac{\left(n-2\right)!}{n!}\)
\(=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(=1-\dfrac{1}{n}=\dfrac{n-1}{n}\) (đpcm)
Trình bày công thức các thứ khá dài nên tôi thử nói hướng, nếu bạn hiểu đc và làm đc thì ok còn nếu k hiểu thì bảo mình, mình làm full cho
Bây giờ phân tích mẫu trước, ra (x-1)2(x+2)
Để cái lim này nó ra đc 1 số thực thì tử và mẫu cùng phải triệt tiêu (x-1)2 đi, tức là tử phải chia hết (x-1)2, tức là tử cũng phải có nghiệm kép x=1
Do đó \(\left\{{}\begin{matrix}f\left(1\right)=0\\f'\left(1\right)=0\end{matrix}\right.\)
Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right)a + 2}}{{\left( {n + 1} \right) + 1}} = \frac{{na + a + 2}}{{n + 1 + 1}} = \frac{{na + a + 2}}{{n + 2}}\)
Xét hiệu:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{na + a + 2}}{{n + 2}} - \frac{{na + 2}}{{n + 1}} = \frac{{\left( {na + a + 2} \right)\left( {n + 1} \right) - \left( {na + 2} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {{n^2}a + na + 2n + na + a + 2} \right) - \left( {{n^2}a + 2n + 2na + 4} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{{n^2}a + na + 2n + na + a + 2 - {n^2}a - 2n - 2na - 4}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\end{array}\)
a) Để \(\left( {{u_n}} \right)\) là dãy số tăng thì:
\({u_{n + 1}} - {u_n} > 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0 \Leftrightarrow a - 2 > 0 \Leftrightarrow a > 2\)
b) Để \(\left( {{u_n}} \right)\) là dãy số giảm thì:
\({u_{n + 1}} - {u_n} < 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} < 0 \Leftrightarrow a - 2 < 0 \Leftrightarrow a < 2\)