
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) -a - (b - c - c)
= 2c - a - b
b) - (a-b+c) - (a+b+c)
= -2a - 2c
c) - a - (b+c)
= -a - b - c
d) -a.(b-a-c)
= a2 - ab + ac
e) (a+b) - (a-b) + (a-c) - (a+c)
= 2b - 2c
f) (a+b-c) + (a-b+c) - (b+c-a) - (a-b-c)
= 2a

1,( a + b ) - ( b - a) +c
= a + b - b + a + c
= ( a + a ) + ( b - b ) + c
= 2a + c
2. - ( a + b - c) + ( a - b - c )
= -a -b +c + a - b - c
= ( -a + a ) - ( b + b ) + ( c - c )
= -2b
mấy câu sau bn tự giải nhá. MỆT

( a + b ) _ ( b _ a ) + c = 2a + c
\(a+b-b+a+c=2a+c\)
\(\left(a+a\right)+\left(b-b\right)+c=2a+c\)
\(2a+0+c=2a+c\)
\(2a+c=2a+c\Rightarrowđpcm\)
- ( a + b _ c ) + ( a _ b _c ) = - 2b
\(-a-b+c+a-b-c=-2b\)
\(\left(-a+a\right)+\left(-b-b\right)+\left(c-c\right)=-2b\)
\(0-2b+0=-2b\)
\(-2b=-2b\Rightarrowđpcm\)
a nhân ( b+ c ) _ a nhân ( b + d ) = a nhân ( c _ d )
\(ab+ac-ab+ad=a.\left(c-d\right)\)
\(a.\left(b+c-b+d\right)=a.\left(c-d\right)\)
\(a.\left(c-d\right)=a.\left(c-d\right)\Rightarrowđpcm\)
a nhân ( b _ c ) + a nhân ( d + c ) = a nhân ( b + d )
\(ab-ac+ad+ac=a.\left(b+d\right)\)
\(a.\left(b-c+d+c\right)=a.\left(b+d\right)\)
\(a.\left(b+d\right)=a.\left(b+d\right)\)
chúc bạn học tốt!!!
( a _ b + c ) _ ( a+ c ) = - b
\(a-b-c-a-=-b\)
\(\left(a-a\right)-c-b=-b\)
\(0-c-b=-b\)
\(-b=-b\Rightarrowđpcm\)

1) a(b + c) - a(b+d) = ab + ac - ab - ad = ac - ad = a(c - d)
2) a(b - c) + a(d+c) = ab - ac + ad +ac = ab + ad = a( b+d)

Áp dụng tính chất dãy ti số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
=> đpcm

a) \(A=\left(a-b\right)-\left(a-b\right)+\left(a-c\right)-\left(a+c\right)\)
\(=a-b-a+b+a-c-a-c\)
\(=-2c\)
b) \(B=\left(a+b+c\right)+\left(a-b+c\right)-\left(b+c-a\right)-\left(a-b-c\right)\)
\(=a+b+c+a-b+c-b-c+a-a+b+c\)
\(=2a+2c\)
\(=2.\left(a+c\right)\)

a, (a-b+c)-(a+c)=-b
<=>a-b+c-a-c=-b
<=>(a-a)+(c-c)-b=-b
<=>0+0-b=-b
<=>-b=-b
Vậy (a-b+c)-(a+c)=-b
b) (a+b)-(b-a)+c=2a+c
<=>a+(b-b)+a+c=2a+c
<=>a+a+c=2a+c
<=>2a+c=2a+c
Vậy (a+b)-(b-a)+c=2a+c
c) -(a+b-c)+(a-b-c)=-2b
<=>-a-b+c+a-b-c=-2b
<=>(-a+a)+(c-c)-(b+b)=-2b
<=>0+0-2b=-2b
<=>-2b=-2b
Vậy -(a+b-c)+(a-b-c)=-2b
d) a(b+c)-a(b+d)=a(c-d)
<=>ab+ac-ab-ad=a(c-d)
<=>a(b+c-b-d)=a(c-d)
<=>a(c-d)=a(c-d)
Vậy a(b+c)-a(b+d)=a(c-d)
e) a(b-c)+a(c+d)=a(b+d)
<=>ab-ac+ac+ad=a(b+d)
<=>a(b-c+c+d)=a(b+d)
<=>a(b+d)=a(b+d)
Vậy a(b-c)+a(c+d)=a(b+d)