Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( a + b ) _ ( b _ a ) + c = 2a + c
\(a+b-b+a+c=2a+c\)
\(\left(a+a\right)+\left(b-b\right)+c=2a+c\)
\(2a+0+c=2a+c\)
\(2a+c=2a+c\Rightarrowđpcm\)
- ( a + b _ c ) + ( a _ b _c ) = - 2b
\(-a-b+c+a-b-c=-2b\)
\(\left(-a+a\right)+\left(-b-b\right)+\left(c-c\right)=-2b\)
\(0-2b+0=-2b\)
\(-2b=-2b\Rightarrowđpcm\)
a nhân ( b+ c ) _ a nhân ( b + d ) = a nhân ( c _ d )
\(ab+ac-ab+ad=a.\left(c-d\right)\)
\(a.\left(b+c-b+d\right)=a.\left(c-d\right)\)
\(a.\left(c-d\right)=a.\left(c-d\right)\Rightarrowđpcm\)
a nhân ( b _ c ) + a nhân ( d + c ) = a nhân ( b + d )
\(ab-ac+ad+ac=a.\left(b+d\right)\)
\(a.\left(b-c+d+c\right)=a.\left(b+d\right)\)
\(a.\left(b+d\right)=a.\left(b+d\right)\)
chúc bạn học tốt!!!
( a _ b + c ) _ ( a+ c ) = - b
\(a-b-c-a-=-b\)
\(\left(a-a\right)-c-b=-b\)
\(0-c-b=-b\)
\(-b=-b\Rightarrowđpcm\)
ta có
vt = a(b-c)+a(d+c) (1)
= ab - ac + ad + ac
= (ac-ac) + (ab+ad)
= 0 + a(b+d)
= a(b+d)
vp = a(b+d) (2)
(1)(2) => đpct
1,( a + b ) - ( b - a) +c
= a + b - b + a + c
= ( a + a ) + ( b - b ) + c
= 2a + c
2. - ( a + b - c) + ( a - b - c )
= -a -b +c + a - b - c
= ( -a + a ) - ( b + b ) + ( c - c )
= -2b
mấy câu sau bn tự giải nhá. MỆT
2, - ( a + b + c ) - ( b - c -a ) + ( 1 - a - b ) - ( c - 3b )
= -a - b -c - b + c + a + 1 - a - b - c + 3b
= (a-a) - (b+b+b) + (c-c) + (-a) + (-c) + 3b
= 0 - 3b + 0 + (-a) + (-c) + 3b
= (3b-3b) + (-a) + (-c)
= 0 + (-a) + (-c)
= (-a) + (-c)
3, ( b - c - 6 ) - ( 7 - a + b ) + c
= b - c - 6 - 7 + a - b + c
= (b-b) + (c-c) - (6+7) + a
= 0 + 0 + 13 + a
= 13 + a
6, 2a - { a - b [ a - b - ( a + b + c ) + 2b ] - c - b }
= 2a - { a - b [ a - b - a - b - c + 2b ] - c - b }
= 2a - { a - b [ ( a - a ) - (b+b) - c + 2b ] - c - b }
= 2a - { a - b [ 0 - 0 - 2b - c + 2b ] - c - b }
= 2a - { a- b [ (2b - 2b) - c ] - c - b }
= 2a - { a - b [ 0 - c ] - c - b }
= 2a - { a - b.(-c) - c - b}
= 2a - a - b.(-c) - c - b
= 1a - (-b).c - c - b
= a - (-b).c - c.1 - b
= a - [(-b) - 1].c - b
ko chắc lắm
\(a,\left(a-b+c\right)-\left(a+c\right)=a-b+c-a-c=-b\)
\(b,\left(a+b\right)-\left(b-a\right)+c=a+b-b+a+c=2a+c\)
\(c,-\left(a+b-c\right)+\left(a-b-c\right)=-a-b+c+a-b-c=-2b\)
\(d,a\left(b+c\right)-a\left(b+d\right)=ab+ac-ab-ad=ac-ad=a\left(c-d\right)\)
\(e,a\left(b-c\right)+a\left(d+c\right)=ab-ac+ad+ac=ab+ad=a\left(b+d\right)\)
a) (a - b + c) - (a + c)
= a - b + c - a - c
= (a - a) - b + (c - c)
= -b
b) (a + b) - (b - a) + c
= a + b - b + a + c
= 2a + (b - b) + c
= 2a + c
c) - (a + b - c) + (a - b - c)
= -a - b + c + a - b - c
= (-a + a) - (b + b) + (c - c)
= -2b
d) a(b + c) - a(b + d)
= ab + ac - ab - ad
= (ab - ab) + (ac - ad)
= ac - ad
= a(c - d)
e) a(b - c) + a(d + c)
= a(b - c + d + c)
= a[b - (c - c) + d]
= d(b + d)
E=(-a-b+c+d)-(d+c-b-2a)
E=-a-b+c+d-d-c+b+2a
E=-a+(-)b+c+d+(-d)+(-c)+b+2a
E=-a+(-b)+c+d+(-d)+(-c)+b+2a
E=(2a-a)+(-b+b)+(-d+d)+(-c+c)=a+0+0+0=a
a) ( a + b - ( b - a ) ) + c = a + b - b + a + c = ( a + a ) + ( b - b ) + 2 = 2a + 2 ( đpcm )
b) -( a + b - c ) + ( a - b - c ) = -a - b + c + a - b - c = ( -a + a ) + ( -b - b ) + ( c - c ) = -2b ( đpcm )
c) * Suy nghĩ các thứ *
a(b+c)-[a(-b-d)]=-a(bc-d)
\(VT=a\left(b+c\right)-\left[a\left(-b-d\right)\right]=ab+ac-\left[-ab-ad\right]\)\(ab+ac+ab+ad=2ab+ac+ad\)
\(VP=a\left(bc-d\right)=-abc+ad\)
2 đẳng thức này sau khi rút gọn không = nhau
=> 2 đẳng thức này k bằng nhau