K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

đề đầu

9 tháng 10 2021

tìm A

 

11 tháng 4 2017

xét \(\frac{a}{n.\left(n+a\right)}=\frac{\left(n+a\right)-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

vậy ............................

1 tháng 12 2015

nâng cap phát triển 6 có

11 tháng 11 2023

a/ \(10^n+2^3=1000...08\) (n-1 chữ số 0)

Tổng các chữ số của \(10^n+2^3\) là \(1+8=9⋮9\Rightarrow10^n+2^3⋮9\)

b/ \(10^n+26=1000...026\) (n-2 chữ số 0)

\(1000...026⋮2\Rightarrow10^n+26⋮2\)

Tổng các chữ số của \(10^n+26\) là \(1+2+6=9⋮9\Rightarrow10^n+26⋮9\)

Mà 2 và 9 là 2 số nguyên tố cùng nhau

\(\Rightarrow10^n+26⋮2.9=18\)

c/

\(9^{2n+1}=9.9^{2n}\)

\(9^{2n}=\left(9^2\right)^n=81^n\) có chữ số hàng đơn vị là 1

\(\Rightarrow9^{2n+1}=9.9^{2n}\) có chữ số hàng đơn vị là 9

\(\Rightarrow9^{2n+1}+1\) có chữ số hàng đơn vị là 0 \(\Rightarrow9^{2n+1}+1⋮10\)

7 tháng 11 2016

Hình như bạn chép sai đề , để mk sửa và chép lại cho nha

Tìm các STN n sao cho n + 3 chia hết cho n - 1 

n + 3 chia hết cho n - 1 \(\Rightarrow n-1+4\) chia hết cho n - 1 \(\Rightarrow4\) chia hết cho n - 1

\(\Rightarrow n-1\in U\left(4\right)\)

ma U ( 4 ) = { 1 ; 2 ; 4 } nên n - 1 \(\in\left\{1;2;4\right\}\) nên \(n\in\left\{2;3;5\right\}\)

Ủng hộ nha Trần Thị Tuyết Nhung

7 tháng 11 2016
  • Ta có: n+3=(n+1)+2 chia hết cho n+1 khi 2 chia hết cho n+1.

Có các trường hợp:

+/ n+1=1 => n=0

+/ n+1=2 => n=1

ĐS: n=0 và n=1

27 tháng 6 2017

\(\frac{1}{n.\left(n+1\right)}=\frac{\left(n+1\right)-n}{n.\left(n+1\right)}\)

\(=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)

\(=\frac{1}{n}-\frac{1}{n+1}\left(dpcm\right)\)

27 tháng 6 2017

Xét \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(đpcm\right)\)

26 tháng 7 2017

1) n=0

2) n=2

Cách 1 :

Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)

          \(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)

Cộng theo từng vế ( 1) và ( 2 ) ta được :

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)

VẬY \(A>B\)

CÁCH 2

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)

   \(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)

VẬY A>B  

Chúc bạn học tốt ( -_- )

18 tháng 3 2020

Đặt \(\hept{\begin{cases}n+1=a^2\\4n+29=b^2\end{cases}\left(a;b\inℕ\right)\Rightarrow\hept{\begin{cases}4n+4=4a^2\\4n+29=b^2\end{cases}}}\)

=> 4n+29-4n-4=b2-4a2

=> 25=(b-2a)(b+2a)

Vì a,b là số tự nhiên => \(\hept{\begin{cases}b-2a;b+2a\inℤ\\b-2a\le b+2a\end{cases}}\)

\(\Rightarrow\left(b-2a;b+2a\right)\inƯ\left(25\right)=\left\{\left(-25;-1\right);\left(-5;-5\right);\left(1;25\right);\left(5;5\right)\right\}\)

Lấy vế cộng vế ta được

\(2b\in\left\{-26;-10;26;10\right\}\)

\(\Rightarrow b\in\left\{-13;-5;13;5\right\}\)

Mà b là số tư nhiên nên b={13;5}

Với b=13

\(\Rightarrow4n+29=13^3=169\)

=> 4n=140

=> n=35 => n+1=36=62

Với b=5

=> \(4n+29=5^2=25\)

=> 4n=-4

=> n=-1

=> n+1=-1+1=0

Vậy với n={35;-1} thì n+1; 4n+29 là số chính phương

khoảng cần 3 người trao đổi **** với mình nữa!