Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\inℝ\).
Đặt \(\sqrt{x^2-3x+4}=a>0\)
\(x^2-5x+4-\left(2x-1\right)a=0\)
\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)
\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)
Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)
P/s: em ko chắc:v
6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)
c/
\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\)
\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)
d/
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)
Đặt \(x^2-x=t\)
\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)
a/ ĐKXĐ: ...
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(2\left(t^2-2\right)-3t+2=0\)
\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)
b/ Với \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)
\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)
\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)
1. ĐKXĐ: $\xgeq \frac{-6}{5}$
PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)
\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)
\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)
Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$
Do đó: $x^2-x-2=0$
$\Leftrightarrow (x+1)(x-2)=0$
$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)
Bài 2: Tham khảo tại đây:
Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24
mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!
a) \(x^3-2x^2-5x+6=0\)
\(\Leftrightarrow\left(x^3-2x^2+x\right)-\left(6x-6\right)=0\\ \Leftrightarrow x\left(x-1\right)^2-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-1\right)-6\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x+2=0\end{matrix}\right.\\ \left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)
Vậy ..............................
b) Đặt \(2x^2+7x-3=a\) theo cách đặt ta có :
\(\left(a-5\right)\cdot a=6\)
\(\Leftrightarrow a^2-5a-6=0\)
nhận xét : \(a-b+c=1-\left(-5\right)-6=0\)
\(\Rightarrow a_1=1\)
\(a_2=\dfrac{-6}{1}=-6\)
Với \(a=a_1=1\) \(\Rightarrow2x^2+7x-3=1\)
\(\Leftrightarrow2x^2+7x-4=0\)
\(\Delta=7^2-4\cdot2\cdot\left(-4\right)=49+32=81\) ( \(\sqrt{\Delta}=\sqrt{81}=9\) )
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt :
\(x_1=\dfrac{-7+9}{2\cdot2}=\dfrac{1}{2}\)
\(x_2=\dfrac{-7-9}{2\cdot2}=-4\)
Với \(a=a_2=-6\) \(\Rightarrow2x^2+7x-3=-6\\ \Leftrightarrow2x^2+7x+3=0\)
\(\Delta=7^2-4\cdot2\cdot3=49-24=25\)
\(\sqrt{\Delta}=\sqrt{25}=5\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt :
\(x_3=\dfrac{-7+5}{2\cdot2}=-\dfrac{1}{2}\)
\(x_4=\dfrac{-7-5}{2\cdot2}=-3\)
Vậy \(x_1=\dfrac{1}{2};x_2=-4;x_3=\dfrac{-1}{2};x_4=-3\) là các giá trị cần tìm
b)\(9\left(x-2\right)^2-4\left(x-1\right)^2=\left(9x^2-36x+36\right)-\left(4x^2+8x-4\right)\)
\(=9x^2-36x+36-4x^2+8x-4\)
\(=5x^2-28x+32\)
\(=\left(x-5\right)\left(5x-8\right)\)
\(\hept{\begin{cases}x-5=0\\5x-8=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=\frac{8}{5}=1\frac{3}{5}\end{cases}}\)
a) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)
\(\left(x^2+2x+1\right)-\left(4x^2-8x+4\right)=0\)
\(-3x^2+10x-3=0\)
\(\left(3-x\right)\left(3x-1\right)=0\)
\(\hept{\begin{cases}3-x=0\\3x-1=0\end{cases}}\)
\(\hept{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)
Đề bài là j bạn ơi
~ Tại vì tớ sợ mất cậu mãi mãi, yêu thầm như thế này nhưng giúp tớ có thể ở bên cạnh cậu ~
Futaba ( Masume báo thù )