K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

(cái đầu tiên mũ 2 thôi nhỉ? chứ mũ 22 sao làm được)

\(A=4m^2+32m+124\\ A=\left(2m\right)^2+2.2m.8+8^2+60\\ A=\left(2m+8\right)^2+60\ge60\forall x\)

\("="\Leftrightarrow\left(2m+8\right)^2=0\\ \Leftrightarrow m=4\)

\(A_{min}=60\)

3 tháng 6 2021

tách thành A= 4.(m2 + 8m +31)

A= 4.((m + 4)2 + 15) 

A= 4( m2 + 8m + 16)

như này xong tách thế nào tiếp ạ? 

19 tháng 6 2021

Toi không thấy hđt nào ở đây cả chỉ tách thành tổng,hiệu bình phương thoi

`a^2+2sqrta+8`

`=a^2-2a+1+2a+2sqrta+7`

`=(a-1)^2+2(a+sqrta+1/4)-1/2+7`

`=(a-1)^2+(sqrta+1/2)^2+13/2`.

19 tháng 6 2021

mấy anh CTV ngủ rồi hay sao ấy mà không thấy tick nhỉ?

3 tháng 6 2021

\(G=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\)

\(G\in Z\Leftrightarrow\dfrac{7}{\sqrt{x}-3}\in Z\)

Tại \(x\in N\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in N\\\sqrt{x}\in I\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3\in Z\\\sqrt{x}-3\in I\end{matrix}\right.\)

TH1: \(\sqrt{x}-3\in I\) \(\Rightarrow\dfrac{7}{\sqrt{x}-3}\notin Z\forall x\) thỏa mãn đk

\(TH2:\sqrt{x}-3\in Z\).Để \(\dfrac{7}{\sqrt{x}-3}\in Z\) \(\Leftrightarrow\sqrt{x}-3\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)

\(\Leftrightarrow x\in\left\{4;16;100\right\}\)

Tại x=4 =>G=-5

Tại x=16=>G=9

Tại x=100=>G=3

Vậy tại x=6 thì \(G_{max}\)=9

(I là số vô tỉ)

3 tháng 6 2021

\(G=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\)

Để \(G\in Z\Rightarrow7⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3\in\left\{1;7;-1;-7\right\}\)

mà \(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3\in\left\{1;7;-1\right\}\)

Để \(G_{max}\Rightarrow\dfrac{7}{\sqrt{x}-3}_{max}\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-3_{min}\end{matrix}\right.\Rightarrow\sqrt{x}-3=1\Rightarrow x=4\)

\(\Rightarrow G_{max}=5\)

 

NV
3 tháng 8 2021

Em kéo xuống trang 40, mục số 3:

Một số mẹo nhỏ với Casio.pdf - Google Drive

3 tháng 8 2021

nhưng mà em dùng casio 580vnx nên hơi khó để tách á thầy 

 

 

7 tháng 7 2021

\(a,\sqrt{29+12\sqrt{5}}+2\sqrt{21-8\sqrt{5}}\)

\(\sqrt{29+6\sqrt{20}}+\sqrt{84-32\sqrt{5}}\)

\(\sqrt{\sqrt{20}^2+6\sqrt{20}+3^2}+\sqrt{84-16\sqrt{20}}\)

\(\sqrt{\left(\sqrt{20}+3\right)^2}+\sqrt{8^2-16\sqrt{20}+\sqrt{20}^2}\)

\(\left|\sqrt{20}+3\right|+\sqrt{\left(8-\sqrt{20}\right)^2}\)

\(\sqrt{20}+3+\left|8-\sqrt{20}\right|\)

\(\sqrt{20}+3+8-\sqrt{20}\)

\(=11\)

20 tháng 8 2017

\(\sqrt{9+2\sqrt{8}}\)thì được

20 tháng 8 2017

\(\sqrt{9+8\sqrt{2}}\)

\(=\sqrt{9+2\sqrt{8}}\)

=\(\sqrt{8+2\sqrt{8}+1}\)

\(=\sqrt{\left(\sqrt{8}+1\right)^2}\)

\(=\sqrt{8}+1\)

đa thức này ko phân tích được nhé bạn

Đề thiếu rồi bạn

21 tháng 8 2023

ĐKXĐ : \(x\ne0;x\ne\pm1\)

a) Bạn ghi lại rõ đề.

b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)

c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)

Không tồn tại Min P \(\forall x\inℝ\)