K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

A=4+16+36+...+10000

=>A=22+42+62+...+1002

=>A=22.(12+22+32+...+502)

Đặt B=12+22+32+...+502

  =>B=1(2-1)+2(3-1)+3(4-1)+...+50(51-1)

 =>B=1.2-1+2.3-2+3.4-3+...+50.51-50

 =>B=(1.2+2.3+3.4+...+50.51)-(1+2+3+...+50)

 =>B=(1.2+2.3+3.4+...+50.51)-1275

Đặt C=1.2+2.3+3.4+...+50.51

  =>3C=1.2.3+2.3.3+3.4.3+...+50.51.3

  =>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+50.51.(52-49)

  =>3C=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+50.51.52-49.50.51

  =>3C=50.51.52

  =>C=(50.51.52):3

  =>C=44200

Thay C vào B, ta có:

B=44200-1275

=>B=42925

Thay B vào A, ta có:

A=22.42925

=>A=171700

12 tháng 11 2019

mình ko hiểu khi bạn làm cách này

13 tháng 10 2021

\(M=\dfrac{1}{2^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2};\dfrac{1}{4^2}< \dfrac{1}{3\cdot4};...;\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}\)

\(\Rightarrow M< \dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ =\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-1-\dfrac{1}{2}-...-\dfrac{1}{50}\\ =\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\left(50.số\right)=\dfrac{50}{50}=1\)

Vậy \(M< 1\)

Mình chỉ so sánh với 1 được thôi à :((

13 tháng 10 2021

Mình nghĩ cậu giải chưa đg đâu!:((

22 tháng 11 2017

roi minh se giai [500 nam nua nhe]

3 tháng 4 2017

245098

11 tháng 7 2015

A = ( 1 + 1/3 ) + ( 1 + 1/15 ) + ( 1 + 1/35 ) + ( 1 + 1/63 ) + .... + ( 1 + 1/9999 )

A = ( 1 + 1 + 1 + ...) + ( 1/3 + 1/15 + 1/35 + 1/63 + ....+ 1/9999 )

tự làm tiếp

2 tháng 9 2021

kết quả bằng 1 / 3 nhé bạn

14 tháng 9 2020

Đề phải là \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{1}{2}\) chứ ?

Ta có : \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(=\frac{1}{4}\left(1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{2500}\right)\)

\(=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Ta lại có : \(\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(=\frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{4}\left(2-\frac{1}{50}\right)=\frac{1}{4}.\frac{99}{50}=\frac{99}{200}\)

Mà \(\frac{99}{200}< \frac{1}{2}\)\(\Rightarrow\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{99}{200}< \frac{1}{2}\)

\(\Rightarrow\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}< \frac{1}{2}\) ( đpcm )

14 tháng 9 2020

\(\text{Đặt BT là A }\Rightarrow A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(\text{Ta có:}\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\text{(để lại }\frac{1}{4}\text{ở đầu)}\)

           \(\frac{1}{4^2}>\frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)

           .......

           \(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{101}\Rightarrow A=\frac{7}{12}-\frac{1}{101}=\frac{707-12}{1212}=\frac{695}{1212}>\frac{606}{1212}=\frac{1}{2}\)

\(\Rightarrow A>\frac{1}{2}\)

26 tháng 1 2016

bai 1 :de tu lam

bai 2:99+9/9=100

bạn bấm vào đúng 0 sẽ ra kết quả 

mình làm bài này rồi