Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{17\cdot21}< 1\)
\(A=\dfrac{4}{4}\cdot\left(\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{17\cdot21}\right)< 1\)
\(A=\dfrac{1}{1}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}< 1\)
\(A=1-\dfrac{1}{21}< 1\) (đúng) (đpcm).
\(A=8400\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(=\frac{8400}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}\right)\)
\(=2100\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(=2100\left(1-\frac{1}{25}\right)\)
\(=2100\cdot\frac{24}{25}\)
\(=2016\)
\(A=8400.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400.\left(\frac{1.4}{1.5.4}+\frac{1.4}{5.9.4}+\frac{1.4}{9.13.4}+\frac{1.4}{13.17.4}+\frac{1.4}{17.21.4}+\frac{1.4}{21.25.4}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}\right)\)
\(A=8400.\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{25}\right)\)
\(A=8400.\frac{1}{4}.\frac{24}{25}\)
\(A=2016\)
Ta có :
\(x+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\)\(=1\)
\(x+\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=1\)
\(x+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)=1\)
\(x+\left(\frac{1}{5}-\frac{1}{45}\right)=1\)
\(x+\frac{8}{45}=1\)
\(x=1-\frac{8}{45}=\frac{37}{45}\)
Ủng hộ mk nha !!! ^_^
\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
vậy x=15. k cho mình nha
\(4S=4.\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\right)\)
=\(\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{21.25}_{ }\)
=\(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{21}-\frac{1}{23}\)
=\(\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)
=> \(S=\frac{4}{25}:4=\frac{4}{25}.\frac{1}{4}=\frac{1}{25}\)
\(S=\frac{1}{5\times9}+\frac{1}{9\times13}+...+\frac{1}{21\times25}\)
\(S\times4=\frac{4}{5\times9}=\frac{4}{9\times13}+...+\frac{4}{21\times25}\)
\(S\times4=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{21}-\frac{1}{25}\)
\(S\times4=\frac{1}{5}-\frac{1}{25}\)
\(S\times4=\frac{4}{25}\)
\(S=\frac{1}{25}\)
\(\frac{8}{1.5}+\frac{8}{5.9}+\frac{8}{9.13}+...+\frac{8}{x\left(x+4\right)}=\frac{1}{2}\)
\(\Leftrightarrow\)\(2\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{1}{2}\)
\(\Leftrightarrow\)\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}=\frac{1}{4}\)
\(\Leftrightarrow\)\(1-\frac{1}{x+4}=\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{x+4-1}{x+4}=\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{x+3}{x+4}=\frac{1}{2}\)
\(\Rightarrow\)\(2\left(x+3\right)=x+4\)
\(\Leftrightarrow\)\(2x+6=x+4\)
\(\Leftrightarrow\)\(x=-2\)
Vậy....
P/s: tham khảo mk ko chắc là đúng
Tìm x
\(\dfrac{x}{5}\)=\(\dfrac{x+6}{15}\)
\(\Rightarrow\)\(\dfrac{3x}{15}\)=\(\dfrac{x+6}{15}\)
\(\Rightarrow\)3x = x+6
\(\Rightarrow\)2x=6
\(\Rightarrow\)x=3
TÍNH TỔNG S
S=\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)
S=\(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}\)
S= \(1-\dfrac{1}{21}\)
S= \(\dfrac{20}{21}\)
Tìm x:
\(\dfrac{x}{5}=\dfrac{x+6}{15}=>\dfrac{3x}{15}=\dfrac{x+6}{15}\)
=> 3x = 6 + x
=> 2x = 6
=> x = 3
Tính tổng S:
\(S=\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)
\(S=\dfrac{4}{1}-\dfrac{4}{5}+\dfrac{4}{5}-\dfrac{4}{9}+\dfrac{4}{9}-\dfrac{4}{13}+...+\dfrac{4}{17}-\dfrac{4}{21}\)
\(S=4-\dfrac{4}{21}\)
\(S=\dfrac{80}{21}\)
\(S=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+..+\frac{2005-2001}{2001.2005}\)
\(=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{2001}-\frac{1}{2005}\right)\)
\(=1+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{9}+\frac{1}{9}\right)+...+\left(-\frac{1}{2001}+\frac{1}{2001}\right)-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
\(=\frac{2004}{2005}\)
Chứng minh \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)
\(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(A=\frac{1}{1}-\frac{1}{21}\)
\(A=\frac{20}{21}\)
\(\frac{20}{21}< 1\)
=> \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)( đpcm )
* Mình sợ sai xD *