Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để A là phân số thì \(n+2\ne0\)hay \(n\ne2\)
Vậy với \(n\ne2\)thì A là phân số.
b, Để A là số nguyên thì \(19⋮n+2\)
hay \(n+2\inƯ\left(19\right)=\left\{\pm1,\pm19\right\}\)
|
Vậy với \(n\in\left\{-21,-3,1,17\right\}\)thì \(A\in Z\)
a,\(\frac{19}{n+2}\) là phân số khi \(19\) không chia hết cho n+2
Giả sử \(19⋮n+2\)
\(\Rightarrow\) \(n+2\in\)Ư(19)
\(\Rightarrow\)\(n\in\left\{-21;-1;1;17\right\}\)
Vậy 19ko chia hết cho n+2 khi\(n\notin\left\{-21;-1;1;17\right\}\)
b, theo câu a ta có A là số nguyên khi \(n\in\left\{-21;-1;1;17\right\}\)
\(A=\frac{4}{2n-1}\)
a, ĐK : \(2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)
b, Khi n = 0
\(A=\frac{4}{2.0-1}=\frac{4}{0-1}=\frac{4}{-1}=-4\)
Khi n = 3
\(A=\frac{4}{2.3-1}=\frac{4}{6-1}=\frac{4}{5}\)
Khi n = 5
\(A=\frac{4}{2.5-1}=\frac{4}{10-1}=\frac{4}{9}\)
c, Để \(A\in Z\)thì \(4⋮2n-1\)hay \(2n-1\inƯ\left(4\right)\)
Ta có bảng sau :
Ư(4) | 2n-1 | n |
1 | 1 | 1 ( TM) |
-1 | -1 | 0 ( TM ) |
2 | 2 | 3/2 ( Loại ) |
-2 | -2 | -1/2 ( Loại ) |
4 | 4 | 5/2 ( Loại ) |
-4 | -4 | -3/2 ( Loại ) |
Vậy để A nguyên thì \(n\in\left\{1;0\right\}\)
a) Để A là một phân số thì n khác 3
b) Để A nguyên thì
4 chia hết cho n-3
=> n-3 thuộc Ư(4)
=>n-3 thuộc {1;-1;4;-4}
Ta có bảng
n-3 1 -1 -4 4
n 4 2 -1 7
Vậy n thuộc{4;2;-1;7} thì A nguyên
k cho mình nhé
n
a) Điều kiện: n-3 khác 0 => n khác 3
b) với n =0 => B = 4/0-3 = 4/-3
Với n =10 => B = 4/10-3 = 4/7
Với n =-2 => B = 4/-2-3 = 4/-5