Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(=17+\dfrac{2}{31}-\dfrac{15}{17}-6-\dfrac{2}{31}=11-\dfrac{15}{17}=\dfrac{172}{17}\)
b: \(=31+\dfrac{6}{13}+5+\dfrac{9}{41}-36-\dfrac{9}{41}-36-\dfrac{6}{13}\)
=36
c: \(=27+\dfrac{51}{59}-7-\dfrac{51}{59}+\dfrac{1}{3}=20+\dfrac{1}{3}=\dfrac{61}{3}\)
\(A=17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)
\(=11-\dfrac{15}{17}=\dfrac{172}{17}\)
\(B=\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{12}=36\dfrac{363}{533}-36\dfrac{6}{12}=\dfrac{193}{1066}\)
\(C=27\dfrac{51}{59}-\left(7\dfrac{51}{59}-\dfrac{1}{3}\right)=27\dfrac{51}{59}-7\dfrac{51}{59}+\dfrac{1}{3}=20+\dfrac{1}{3}=\dfrac{61}{3}\)
\(A=17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)
\(=\left(17\dfrac{2}{31}-6\dfrac{2}{31}\right)-\dfrac{15}{17}=11-\dfrac{15}{17}=\dfrac{172}{17}\)
\(B=\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{12}=36\dfrac{363}{533}-36\dfrac{1}{2}=\dfrac{193}{1066}\) (Casio :>)
\(C=27\dfrac{51}{59}-\left(7\dfrac{51}{59}-\dfrac{1}{3}\right)=27\dfrac{51}{59}-7\dfrac{51}{59}+\dfrac{1}{3}\)
\(=20+\dfrac{1}{3}=\dfrac{61}{3}\)
Vì \(45=BCNN\left(5,9\right)\) và \(ƯCLN\left(5,9\right)=1\)
Ta có :
\(36^{36}-9^{10}⋮9\left(1\right)\)
Mặt khác :
\(36^{36}=\left(......6\right)\)
\(9^{10}=\left(9^2\right)^5=81^5=\left(.....1\right)\)
\(\Leftrightarrow36^{36}-9^{10}=\left(....6\right)-\left(....1\right)=\left(.....5\right)\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow36^{36}-9^{10}⋮45\left(đpcm\right)\)
a) Ta có:
\(8^9+7^9+6^9+...+1^9\)
\(=\left(8^3+7^3+6^3+...+1^3\right)^2\)
\(=\left(\left(8+7+6+...+2+1\right)^2\right)^2\)
\(=\left(8+7+6+...+2+1\right)^4\)
\(=36^4=9^4.4^4\)
Mà \(9^{10}=9^4.9^6\)
\(\Rightarrow9^4.9^6>9^4.4^4\)
Vậy \(9^{10}>8^9+7^9+6^9+...+1^9\)
b) \(45=5.9\)
Ta có:
\(\left\{{}\begin{matrix}36⋮9\\9⋮9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\)\(\Rightarrow\left(36^{36}-9^{10}\right)⋮9\)
Lại có:
\(36\div5\) dư \(1\)
\(9\div5\) dư \(1\)
\(\Rightarrow\left(36^{36}-9^{10}\right)⋮5\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) và \(\left(9;5\right)=1\)
\(\Rightarrow\left(36^{36}-9^{10}\right)⋮45\) (Đpcm)
mình ko hiểu cái chỗ từ (1),(2) và (9;5)=1
bạn giải thích lại đc ko
a) \(\left(\frac{2}{3}\right)^x=\left(\frac{4}{9}\right)^{50}\)
\(\Rightarrow\left(\frac{2}{3}\right)^x=\left(\frac{2^2}{3^2}\right)^{50}\)
\(\Rightarrow\left(\frac{2}{3}\right)^x=\left(\frac{2}{3}\right)^{100}\)
\(\Rightarrow x=100\)
Vậy x = 100
b) \(\left(\frac{2}{3}-x\right)^2=\frac{1}{36}\)
\(\Rightarrow\left(\frac{2}{3}-x\right)^2=\left(\frac{1}{6}\right)^2\)
\(\Rightarrow\frac{2}{3}-x=\frac{1}{6}\)
\(\Rightarrow x=\frac{2}{3}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
2)
Ta có:
\(74^{m+1}+74^m=74^m.74^1+74^m=74^m.\left(74+1\right)=74^m.75⋮25\)
( vì \(75⋮25\) )
\(\Rightarrowđpcm\)
Vì 45=9x5
=> 36^{36}36 -9^{10}10 chia hết cho 9 (1) (vì 3636 và 910 đều chia hết cho 9)
36^{36}36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6)
9^{10}10tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1)
=> 36^{36}36 -910 tận cùng là 5 và do đó nó chia hết cho 5 (2)
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) => 36^{36}36 9^{10}10 chia hết cho 45.
Câu 1:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\) \(\left(a+b+c\ne0\right)\)
Ta có: \(\dfrac{a^3b^2c^{1930}}{a^{1935}}=\dfrac{a^3a^2a^{1930}}{a^{1935}}=\dfrac{a^{1935}}{a^{1935}}=1\)
Vậy \(\dfrac{a^3b^2c^{1930}}{a^{1935}}=1\)
\(a,2^{24}\) và \(3^{36}.\)
Ta có:
\(2^{24}=2^{2.12}=\left(2^2\right)^{12}=4^{12}.\)
\(3^{36}=3^{3.12}=\left(3^3\right)^{12}=27^{12}.\)
Vì \(4^{12}< 27^{12}\left(4< 27\right)\Rightarrow2^{24}< 3^{36}.\)
Vậy.....
\(b,10^{20}\) và \(90^{10}.\)
Ta có:
\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}.\)
\(90^{10}=90^{10}.\)
Vì \(100^{10}>90^{10}\left(100>90\right)\Rightarrow10^{20}>90^{10}.\)
Vậy.....
\(c,2^{332}\) và \(3^{223}.\)
Ta có:
\(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}.\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}.\)
Vì \(8^{111}< 9^{111}\left(8< 9\right)\Rightarrow2^{332}< 3^{223}.\)
Vậy.....
290=(25)18=3218
536=(52)18=2518
Vì 32>25 nên 3218>2518
=>290>536
b,15=\(\sqrt{225}\) <\(\sqrt{235}\)
=> 15<\(\sqrt{235}\)
c, Ta có: \(\dfrac{1}{3}=\dfrac{13}{39}\)
vì 38<39
nên \(\dfrac{13}{38}>\dfrac{13}{39}\)
a) 290= (210)9mà 210=(25)2
536= (54)9mà 54=(52)2
Do 25>52nên 290>536
\(B=3:\left(-\dfrac{3}{2}\right)+\dfrac{1}{9}.\sqrt{36}\)
\(=3.\dfrac{-2}{3}+\dfrac{1}{9}.6\)
\(=-2+\dfrac{2}{3}\)
\(=-\dfrac{4}{3}\)