Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3+3^2+3^3+....+3^{120}\)
a, Ta thấy : Cách số hạng của B đều chi hết cho 3
\(B=3+3^2+3^3+....+3^{120}⋮3\)
\(b,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(B=3.4+3^3.4+...+3^{119}.4\)
\(B=4\left(3+3^3+...+3^{199}\right)\)
Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)
\(\Rightarrow B⋮4\)
\(c,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)
\(B=13+3^2.13+...+3^{118}.13\)
\(B=13\left(3^2+3^4+...+3^{118}\right)\)
Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)
\(\Rightarrow B⋮13\)
B=(3+32+33)+(34+35+36)+...+(358+359+360)
=3(1+3+9)+34(1+3+9)+...+358(1+3+9)
=13.3+13.34+...+13.358
=13.(3+34+...+358) luôn chia hết cho 13
vậy B chia hết cho 13
B=(3+32)+(33+34)+...+(359+360)
B=3(1+3)+33(1+3)+34(1+3)+...+359(1+3)
4(4+33+34+...+359)
suy ra:4(4+33+34+...+359)chia hết cho 4
1/a)Ta có: A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23+24) + ... + (259 + 560)
= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) \(⋮\) 3
Vậy A \(⋮\) 3.
b) Tương tự: gộp 3.
c) gộp 4
Bài 1:
a, A = 2 + 22 + 23 + ... + 260
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )
= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )
= 2 . 3 + 23 . 3 + ... + 259 . 3
= 3 . ( 2 + 23 + ... + 259 )
Vậy A chia hết cho 3
b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)
= 2. 7 + 24 . 7 + ... + 258 . 7
= 7 . ( 2 + 24 + ... + 258 )
Vậy A chia hết cho 7
c, Ta có:
A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )
= 2. 15 + ............ + 257 . 15
= 15 . ( 2 + ...............+ 257 )
Vậy A chia hết cho 15
ta có: (3+32)+(33+34)+...+(359+360)
suy ra: 12+33.(1+3)+...+359.(1+3)
suy ra:3.4+33.4+...+359.4 chia hết 4
ta có:(3+32+33)+...+(358+359+360)
suy ra:3.(1+3+9)+...+358.(1+3+32)
suy ra:3.13+....+358.13 chia hết 13
a) Ta có: B=3(1+3)+33(1+3)+....+359(1+3)
=4(3+33+...+359)
=>B chia hết cho 4
b)Ta có:B=3(1+3+32)+34(1+3+32)+...+358(1+3+32)
=13(3+34+...+358)
=>B chia hết cho 13 (đpcm)
a/ \(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)
\(A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(A=40\left(3+3^5+3^9+...+3^{53}+3^{57}\right)\)Chia hết cho 4; 5
Ta cũng có
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(A=13\left(3+3^4+3^7+...+3^{55}+3^{58}\right)\) chia hết cho 13
b/ \(3A=3^2+3^3+3^4+...+3^{61}\)
\(A=\frac{3A-A}{2}=\frac{3^{61}-3}{2}< 3^{61}\)
a/ \(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=12+3^2\left(3+3^2\right)+3^{58}\left(3+3^2\right)=12\left(1+3^2+3^4+...+3^{56}+3^{58}\right)\) chia hết cho 12
c/ \(A=3+\left(3^2+3^3+3^4+...+3^{60}\right)\)
\(A=3+3^2\left(1+3+3^2+...+3^{58}\right)\)
Ta có \(3^2\left(1+3+3^2+...+3^{58}\right)\) chia hết cho 9 => A chia 9 dư 3
d/ Từ câu A ta có
\(A=40\left(3+3^5+3^9+...+3^{53}+3^{57}\right)\)=> chữ số tận cùng của A là 0
a) B = 3 + 32 + 33 + ... + 360
=(3+32)+(33+34)+...+(359+360)
=3(1+3)+33(1+3)+...+359(1+3)
=(3+1)(3+33+...+359)
=4(3+33+...+359)
=>B chia hết cho 4
câu a trước nè **** caj làm típ
b) B=(3+32+33)+...+(358+359+360)
=30(3+32+33)+...+357(358+359+360)
=3+32+33(30+33+36+...+357)
=39(30+33+36+...+357) chia hết cho 13
Vậy B chia hết cho 13
**** cả 2 bài nha
\(A=3+3^2+3^3+...+3^{60}\)
\(3A-A=3+3^2+3^3+...+3^{61}-\left(1+3+3^2+...+3^{60}\right)\)
\(2A=3^{61}-1\)
\(A=\dfrac{3^{61}-1}{2}\)