K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

\(a,2y^2-4y=2y\left(y-2\right)\\ b,5\left(3y+y\right)\left(4y-3y\right)\\ =5\cdot4y\cdot y=20y^2\)

10 tháng 9 2021

2(𝑦−2)⋅𝑦

\(2y^2-4y+5\left(3y+y\right)\left(4y-3\right)\)

\(=2y^2-4y+20y\left(4y-3\right)\)

\(=82y^2-64y\)

9 tháng 4 2023

a, M(y) = 4y2 - 4 + 2y + y5

   M(y) = y5 + 4y2 + 2y - 4

N(y) = 3y - 2y3 + 4 - y4 + y5

N(y) = y5 - y4 - 2y3 + 3y + 4

b,       M(y) + N(y) 

           y5             + 4y2+2y - 4

  +      y- y4 - 2y3      +3y + 4

_________________________

       2y5 - y4 -2y3 + 4y2+5y

M(y) -N(y) 

        y5             + 4y2+2y - 4

 -       y5 - y4 - 2y3     + 3y + 4

________________________

            y4 + 2y3 + 4y2 - y - 8 

Bậc cao nhất của M(y) -N(y) là: 4

 Hệ số cao nhất là 1

Hệ số tự do là - 8

 

 

Bậc của M(y)- N(y) là 4

 Hệ số cao nhất là 1

Hệ số tự do là - 4

17 tháng 9 2019

Bài 1:

a) Ta có: \(2x=5y.\)

=> \(\frac{x}{y}=\frac{5}{2}\)

=> \(\frac{x}{5}=\frac{y}{2}\)\(x.y=90.\)

Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)

Có: \(x.y=90\)

=> \(5k.2k=90\)

=> \(10k^2=90\)

=> \(k^2=90:10\)

=> \(k^2=9\)

=> \(k=\pm3.\)

TH1: \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)

TH2: \(k=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).5=-15\\y=\left(-3\right).2=-6\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(15;6\right),\left(-15;-6\right).\)

e) Ta có: \(\frac{x}{y}=\frac{4}{5}.\)

=> \(\frac{x}{4}=\frac{y}{5}\)\(x.y=20.\)

Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)

Có: \(x.y=20\)

=> \(4k.5k=20\)

=> \(20k^2=20\)

=> \(k^2=20:20\)

=> \(k^2=1\)

=> \(k=\pm1.\)

TH1: \(k=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.5=5\end{matrix}\right.\)

TH2: \(k=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).4=-4\\y=\left(-1\right).5=-5\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(4;5\right),\left(-4;-5\right).\)

Chúc bạn học tốt!

17 tháng 9 2019

sao ngắn vậy bạn

16 tháng 7 2018

Bài 1:

a)   \(x^2+5x=x\left(x+5\right)< 0\)  (1)

Nhận thấy:   \(x< x+5\)

nên từ (1)   \(\Rightarrow\)  \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)

Vậy.....

b)   \(3\left(2x+3\right)\left(3x-5\right)< 0\)

TH1:   \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\)  \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)

TH2:  \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\)  vô lí

Vậy   \(-\frac{3}{2}< x< \frac{5}{3}\)

16 tháng 7 2018

Bài 2:

a)  \(2y^2-4y=2y\left(y-2\right)>0\)

TH1:   \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)

TH2:  \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)

Vậy  \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)

b)  \(5\left(3y+1\right)\left(4y-3\right)>0\)

TH1:  \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)

TH2:  \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)

Vậy   \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)

12 tháng 10 2015

khó + lười + nhiều = không làm

16 tháng 5 2019

Hello

3 tháng 10 2016

a) Ta có:

2y2 - 4y dương 

<=> y(2y-4) dương

<=> y và 2y-4 cùng dấu

<=> \(\left[\begin{array}{nghiempt}y< 0\\2y-4< 0\Rightarrow2y< 4\Rightarrow y< 2\end{array}\right.\)

\(\left[\begin{array}{nghiempt}y>0\\2y-4>0\Rightarrow2y>4\Rightarrow y>2\end{array}\right.\)

Vậy y > 2 hoặc y < 2 thì thỏa mãn đề bài

b) 5(3y+1)(4y-3) > 0

<=> (3y+1)(4y-3) > 0

<=>\(\left[\begin{array}{nghiempt}3y+1>0;4y-3>0\\3y+1< 0;4y-3< 0\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}3y>-1;4y>3\\3y< -1;4y< 3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}y>-\frac{1}{3};y>\frac{3}{4}\\y< -\frac{1}{3};y< \frac{3}{4}\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}y>\frac{3}{4}\\y< -\frac{1}{3}\end{array}\right.\)

(Dấu ";" có nghĩa là chữ và nha)

3 tháng 10 2016

ghê vãi

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

a.

$7x-2y=5x-3y$

$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:

$-y+3y=20$

$2y=20$

$\Rightarrow y=10$. 

$x=\frac{-y}{2}=\frac{-10}{2}=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

b.

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$

$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$

$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$ 

 

25 tháng 8 2017

\(2y^2-4y>0\)

\(\Rightarrow2y\left(y-2\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2y>0\Leftrightarrow y>0\\y-2>0\Leftrightarrow y>2\end{matrix}\right.\\\left\{{}\begin{matrix}2y< 0\Leftrightarrow y< 0\\y-2< 0\Leftrightarrow y< 2\end{matrix}\right.\end{matrix}\right.\)

Vậy...

NV
20 tháng 1

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)

(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)

b.

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)

c.

\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)

d.

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)