K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm x,y \(\in\) Z thôi nhỉ ?

a, ( 2x + 1 ).( 4 - y ) = 10

= > ( 2x + 1 ) , ( 4 - y ) \(\inƯ\left(10\right)\in\left\{-10;-5;-2;-1;1;2;5;10\right\}\) thỏa mãn \(\left(2x+1\right)\left(4-y\right)=10\)

Đến đây em lập bảng xét 8 TH ( 2x + 1 ) , ( 4 - y ) \(\in\left\{\left(-10;-1\right);\left(-1;-10\right);\left(-5;-2\right);\left(-2;-5\right);\left(1;10\right);\left(10;1\right);\left(2;5\right);\left(5;2\right)\right\}\)

rồi tìm ra x,y nhé !

b, 2x - 4 + xy - 2y = -3

<=> 2( x - 2 ) + y( x - 2 ) = -3

<=> ( x - 2 ) ( 2 + y ) = -3

Tương tự câu a,

 

 

 

 

2:

a: A(x)=0

=>5x-10-2x-6=0

=>3x-16=0

=>x=16/3

b: B(x)=0

=>5x^2-125=0

=>x^2-25=0

=>x=5 hoặc x=-5

c: C(x)=0

=>2x^2-x-3=0

=>2x^2-3x+2x-3=0

=>(2x-3)(x+1)=0

=>x=3/2 hoặc x=-1

6 tháng 4 2022

mình cần gấp

 

Đề bài yêu cầu gì?

16 tháng 7 2021

x : y : z = 3 : 4 : 5

=>\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Ta có:\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)

ADTCDTSBN:

\(\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{18+32+75}=\dfrac{-4}{5}\)

\(\dfrac{x}{3}=\dfrac{-4}{5}\Rightarrow x=\dfrac{-12}{5}\)

\(\dfrac{y}{4}=\dfrac{-4}{5}\Rightarrow y=\dfrac{-16}{5}\)

\(\dfrac{z}{5}=\dfrac{-4}{5}\Rightarrow z=-4\)

16 tháng 7 2021

\(x:y:z=3:4:5=>\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

\(=>x=\dfrac{3y}{4},z=\dfrac{5y}{4}\) thay x,z vào \(2x^2+2y^2-3z^2=-100\)

\(< =>2\left(\dfrac{3y}{4}\right)^2+2y^2-3\left(\dfrac{5y}{4}\right)^2=-100\)

\(=>y=\pm8\)

* với y=8 \(=>x=\dfrac{3.8}{4}=6,z=\dfrac{5.8}{4}=10\)

* với y=-8 \(=>x=-6,z=-10\)

12 tháng 4 2021

Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 M=x3+x2y−2x2−xy−y2+3y+x−1M=x3+x2y−2x2−xy−y2+3y+x−1

M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)M=x3+x2y−2x2−xy−y2+(2y+y)+x−(−2+1)

M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1M=(x3+x2y−2x2)−(xy+y2−2y)+(x+y−2)+1

M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1M=(x2.x+x2.y−2x2)−(x.y+y.y−2y)+(x+y−2)+1

M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1M=x2.(x+y−2)−y.(x+y−2)+(x+y−2)+1

M=x2.0+y.0+0+1M=x2.0+y.0+0+1

M=1M=1

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−2

N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)N=x3+x2y−2x2−xy2+x2y+2xy+2y+2x−(−4+2)

N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2N=(x3+x2y−2x2)−(x2y+xy2−2xy)+(2x+2y−4)+2

N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2N=(x2x+x2y−2x2)−(xyx+xyy−2xy)+(2x+2y−4)+2

N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2N=x2(x+y−2)−xy(x+y−2)+2(x+y−2)+2

N=x2.0−xy.0+2.0+2N=x2.0−xy.0+2.0+2

N=2N=2

P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3P=x4+2x3y−2x3+x2y2−2x2y−x(x+y)+2x+3

P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x4+x3y−2x3)+(x3y+x2y2−2x2y)−(x2+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3P=(x3x+x3y−2x3)+(x2y.x+x2yy−2x2y)−(xx+xy−2x)+3

P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3P=x3(x+y−2)+x2y(x+y−2)−x(x+y−2)+3

P=x3.0+x2y.0−x.0+3P=x3.0+x2y.0−x.0+3

P=3

25 tháng 8 2023

1)

xy + x - 4y = 12

x + y(x - 4) = 12

y(x - 4) = 12 - x

\(y=\dfrac{-x+12}{x-4}\)

Vì \(x,y\inℕ\) nên

\(\left(-x+12\right)⋮\left(x-4\right)\)

\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)

\(16⋮\left(x-4\right)\)

\(\left(x-4\right)\inƯ\left(16\right)\)

\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)

\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)

\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)

\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)

2)

(2x + 3)(y - 2) = 15

\(\left(2x+3\right)\inƯ\left(15\right)\)

\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Ta lập bảng

2x + 3 1 -1 3 -3 5 -5 15 -15
y - 2 15 -15 5 -5 3 -3 1 -1
(x; y) (-1; 17) (-2; -13) (0; 7) (-3; -3) (1; 5) (-4; -1) (6; 3) (-9; 1)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)

24 tháng 8 2023

các thầy cô ơi giúp em vs ạ mai em phải nộp r ạ!!!

 

18 tháng 6 2019

x, y, z thuộc gì thế bạn?

18 tháng 6 2019

À mình quên, x,y,z ∈ Z nhé ! Giúp mình với