Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 2 + 2^2 + ... + 2^58 + 2^59 + 2^60
A = 2 ( 2 + 1 ) + 2^3 ( 2 + 1 ) + ... + 2^59 ( 2 + 1)
A = 3 .2 + 3.2^3 + ... + 3.2^59
A = 3 ( 2 + 2^3 + ... + 2^59 ) luôn chia hết cho 3
Ta có A = 2+22 + 23 + .....+ 259 + 260
= ( 2+ 22 + 23) +....+ (258 + 259 + 260)
= 2(1+2+4) +....+ 258( 1+2+4)
= 2 .7+24.7 +....+ 258 . 7
= 7( 2+24 + ....+ 258)
=> A chia hết cho 7
a) cho A = 2+22+23+...+260
cmr A chia hết cho 3 và 7
b) cho B = 3+33+35+...+31991
cmr B chia hết cho 13
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
a)A=2+2^2+2^3.....+2^60
(2+2^2)+(2^3+2^4)+.....+(2^59+2^60)
2×(1+2)+2^3×(1+2)+....+2^59×(1+2)
2×3+2^3×3+...+2^59×3
vì 3 chia hết cho 3 nên:
2×3+2^3×3+...+2^59×3 chia hết cho 3
2+2^2+2^3+....+2^60
(2+2^2+2^3)+....+(2^58+2^59+2^60)
2×(1+2+2^2)+....+2^58×(1+2+2^2)
2×(1+2+4)+....+2^58×(1+2+4)
2×7+.....+2^58×7
vì 7 chia hết cho 7 nên:
2×7+....+2^58×7 chia hết cho 7
b)B=3+3^2+3^3+.....+3^1991
(3+3^2+3^3)+...+(3^1989+3^1990+3^1991)
3×(1+3+3^2)+....+3^1989×(1+3+3^2)
3×(1+3+9)+....+3^1989×(1+3+9)
3×13+....+3^1989×13
vì 13 chia hết cho 13 nên
3×13+....+3^1989×13 chia hết cho 13
Ta có: A=2+22+23+24+25+…+260
=>A=(2+22+23)+(24+25+26)+…+(258+259+260)
=>A=(2+22+23)+23.(2+22+23)+…+257.(2+22+23)
=>A=14+23.14+…+257.14
=>A=(1+23+…+257).14
=>A=(1+23+…+257).2.7 chia hết cho 7
Vậy A chia hết cho 7
A= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
A= 2.(1+2+2^2)+2^4.(1+2+2^3)+...+2^58(1+2+2^2)
A= 2.7+2^4.7+...+2^58.7
A= (2+2^4+...+2^58).7
=> A chia hết cho 7