K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

\(A=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(5.A=5.(1+5+5^2+5^3+...+5^{2008}+5^{2009}) \)

\(5.A=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

\(5.A-A=4.A=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+5^3+...+5^{2008}+5^{2009})\)

\(4.A=5^{2010}-1\)

\(A=\frac{5^{2010}-1}{4}\)

\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)

\(2.B=2.(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)

\(2.B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)

\(2.B+B=3.B=(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3)+(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)

\(3.B=2^{101}+2^2 \)

\(B=\frac{2^{101}+2^{2}}{3}\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-10^3)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-1000)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...0...(1000-50^3)\)

\(C=0\)

Tick cho mình nha!!!

Chúc bạn học tốt!

23 tháng 2 2020

Mình làm mất hơn 1 tiếng đó!

24 tháng 2 2016

Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99] 

Khoảng cách của từng số hạng là 3

Số số hạng là: (99-12):3+1=30(số)

Vậy có 30 số có 2 chữ số chia hết cho 3

7 tháng 2 2017

A=Số thừa số của (-1) là:1+2+3+4+5+...+100=(1+100).100:2=5050

do 5050 là số chẵn => A=1

3 tháng 5 2016

a) Ta có: 2B = \(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)

                B = \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)

        \(\Rightarrow\) 3B = \(2^{101}+2^2\)

        \(\Rightarrow\) B = \(\frac{2^{101}+4}{3}\)

11 tháng 9 2019

Chứng minh \(S=3+3^2+...+3^{100}⋮120\)

Ta có \(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=120+...+3^{96}.120⋮120\)

Vậy \(S=3+3^2+...+3^{100}⋮120\)

Chứng minh \(P=36^{36}-9^{10}⋮45\)

Cái này dùng đồng dư thức

\(P=36^{36}-9^{10}\equiv1-4^{10}\equiv1-16^5\equiv1-10\equiv0\left(mod5\right)\)

Mà dễ thấy P chia hết cho 9 và \(\left(9;5\right)=1\)

Vậy P chia hết cho 45

Chứng minh \(M=7^{1000}-3^{1000}⋮10\)

Ta có \(M=7^{1000}-3^{1000}=\left(2401\right)^{250}-\left(81\right)^{250}\equiv1-1\equiv0\left(mod10\right)\)

Vậy M chia hết cho 10

8 tháng 7 2017

\(\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-15^3\right)\)

\(=\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)....\left(1000-15^3\right)\)

\(=\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)....\left(1000-15^3\right)\)

\(=\left(1000-1^3\right)\left(1000-2^3\right)....0.....\left(1000-15^3\right)\)

\(=0\)

8 tháng 7 2017

\(\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right).....\left(1000-15^3\right)\)

\(=\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)....\left(1000-15^3\right)\left(1000-10^3\right)\)\(=A.\left(1000-10^3\right)\)

\(=A.0=0\)

3 tháng 9 2017

Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7  . (-1)9 . (-1)11 . (-1)13

= (-1)(-1).(-1).(-1).(-1).(-1) 

= (-1)6

= 1

b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)

= 0 

Bài 2 : 

Đặt A = 1+ 2+ 3+ ... + 10= 385

=> 22(1+ 2+ 3+ ... + 102) = 22.385

=> 22 + 42 + 62 + ..... + 202 = 4.385

=> 22 + 42 + 62 + ..... + 202 = 1540

Vậy 22 + 42 + 62 + ..... + 202 = 1540

4 tháng 1 2018

bài 3:

a) 2S=2+22+23+24+...+251

    2S-S=251-1

mà 251-1<251

Suy ra:s<251