Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(5.A=5.(1+5+5^2+5^3+...+5^{2008}+5^{2009}) \)
\(5.A=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
\(5.A-A=4.A=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+5^3+...+5^{2008}+5^{2009})\)
\(4.A=5^{2010}-1\)
\(A=\frac{5^{2010}-1}{4}\)
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)
\(2.B=2.(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)
\(2.B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)
\(2.B+B=3.B=(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3)+(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)
\(3.B=2^{101}+2^2 \)
\(B=\frac{2^{101}+2^{2}}{3}\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-10^3)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-1000)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...0...(1000-50^3)\)
\(C=0\)
Tick cho mình nha!!!
Chúc bạn học tốt!
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
A=Số thừa số của (-1) là:1+2+3+4+5+...+100=(1+100).100:2=5050
do 5050 là số chẵn => A=1
a) Ta có: 2B = \(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)
B = \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)
\(\Rightarrow\) 3B = \(2^{101}+2^2\)
\(\Rightarrow\) B = \(\frac{2^{101}+4}{3}\)
Chứng minh \(S=3+3^2+...+3^{100}⋮120\)
Ta có \(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=120+...+3^{96}.120⋮120\)
Vậy \(S=3+3^2+...+3^{100}⋮120\)
Chứng minh \(P=36^{36}-9^{10}⋮45\)
Cái này dùng đồng dư thức
\(P=36^{36}-9^{10}\equiv1-4^{10}\equiv1-16^5\equiv1-10\equiv0\left(mod5\right)\)
Mà dễ thấy P chia hết cho 9 và \(\left(9;5\right)=1\)
Vậy P chia hết cho 45
Chứng minh \(M=7^{1000}-3^{1000}⋮10\)
Ta có \(M=7^{1000}-3^{1000}=\left(2401\right)^{250}-\left(81\right)^{250}\equiv1-1\equiv0\left(mod10\right)\)
Vậy M chia hết cho 10
\(\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-15^3\right)\)
\(=\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)....\left(1000-15^3\right)\)
\(=\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)....\left(1000-15^3\right)\)
\(=\left(1000-1^3\right)\left(1000-2^3\right)....0.....\left(1000-15^3\right)\)
\(=0\)
\(\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right).....\left(1000-15^3\right)\)
\(=\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)....\left(1000-15^3\right)\left(1000-10^3\right)\)\(=A.\left(1000-10^3\right)\)
\(=A.0=0\)
Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7 . (-1)9 . (-1)11 . (-1)13
= (-1)(-1).(-1).(-1).(-1).(-1)
= (-1)6
= 1
b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)
= 0
Bài 2 :
Đặt A = 12 + 22 + 32 + ... + 102 = 385
=> 22(12 + 22 + 32 + ... + 102) = 22.385
=> 22 + 42 + 62 + ..... + 202 = 4.385
=> 22 + 42 + 62 + ..... + 202 = 1540
Vậy 22 + 42 + 62 + ..... + 202 = 1540
bài 3:
a) 2S=2+22+23+24+...+251
2S-S=251-1
mà 251-1<251
Suy ra:s<251