Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.2.3 = 1/4 . (1.2.3.4 - 0.1.2.3)
2.3.4 = 1/4 . (2.3.4.5 - 1.2.3.4)
3.4.5 = 1/4 . (3.4.5.6 - 2.3.4.5)
.................
99.100.101 = 1/4 . (99.100.101.102 - 98.99.100.101)
C = 1.2.3+2.3.4+3.4.5+.........+99.100.101
C= 1/4 . (99.100.101.102 - 98.99.100.101)
CHUC BN HOK GIỎI!
\(A=1.2.3+2.3.4+...+99.100.101\)
\(\Rightarrow4A=1.2.3.4+2.3.4\left(5-1\right)+...+99.100.101.\left(102-98\right)\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+...+99.100.101.102-98.99.100.101\)
\(=99.100.101.102\)
\(\Rightarrow A=\dfrac{99.100.101.102}{4}=99.25.101.102\)
Vậy...
Đặt \(A=1.2.3+2.3.4+3.4.5+...+99.100.101\)
\(\Rightarrow4A=1.2.3.4+2.3.4.4+...+99.100.101.4\)
\(=1.2.3\left(4-0\right)+2.3.4\left(5-1\right)+...+99.100.101\left(102-98\right)\)
\(=\left(1.2.3.4+2.3.4.5+...+99.100+101.102\right)-\left(0.1.2.3+1.2.3.4+...+98.99.100.101\right)\)
\(=99.100.101.102-0.1.2.3\)
\(=101989800\)
\(\Rightarrow A=101989800:4=25497450\)
Vậy \(A=25497450.\)
Đặt A = 1.2.3 + 2.3.4 + ... + 99.100.101
=> 4A = 1.2.3.4 + 2.3.4.(5-1) + ... + 99.100.101.(102-98)
=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 99.100.101.102 - 98.99.100.101
=> 4A = 99.100.101.102
=> 4A = 101989800
=> A = 25497450
\(\dfrac{5}{1\cdot2\cdot3}+\dfrac{5}{2\cdot3\cdot4}+...+\dfrac{5}{99\cdot100\cdot101}\)
\(=5\cdot\left(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{99\cdot100\cdot101}\right)\)
\(=5\cdot\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}-\dfrac{1}{100\cdot101}\right)\)
\(=\dfrac{5}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{100\cdot101}\right)\)
\(=\dfrac{5}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{10100}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{5049}{10100}\)
\(=\dfrac{25245}{20200}=\dfrac{5049}{4040}\)
Kết quả là : \(\frac{5049}{20200}\)
A = 1.2.3 + 2.3.4 + ... + 99.100.101
=> 4A = 1.2.3.4 + 2.3.4.4 + ... + 99.100.101.4
=> 4A = 1.2.3.4 + 2.3.4.(5 - 1) + ... + 99.100.101.(102 - 98)
=> 4A - 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 99.100.101.102 - 98.99.100.101
=> 4A = 99.100.101.102
=> A = 99.100.101.102 :4
=> A = 25497450