![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyễn Trà My
Phần a)
\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(32-3x+13=76-x\)
\(116-3x=76-x\)
\(116-76=3x-x\)
\(46=2x\)
\(x=46\div2\)
\(x=13\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 Từ \(\left|x-1\right|=2\) \(\Rightarrow\left\{{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2+1\\x=-2+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Với x = 3 \(\Rightarrow A=3\cdot3^2-4\cdot3+1\)
\(A=3\cdot9-12+1\)
\(A=27-12+1=16\)
Với x = -1 \(\Rightarrow A=3\cdot\left(-1\right)^2-4\cdot\left(-1\right)+1\)
\(A=3\cdot1-\left(-4\right)+1\)
\(A=3+4+1=8\)
Bài 2
a) \(\left|x-10\right|=-x+10=10-x\)
\(\left|x-10\right|=10-x\) \(\Leftrightarrow x-10\le0\) \(\Leftrightarrow x\le10\)
b)\(\left|\dfrac{x-1}{1-x}\right|=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{1-x}=1\\\dfrac{x-1}{1-x}=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=1-x\\x-1=-1+x\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x+x=1+1\\x-x=-1+1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2x=2\\0=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2:2=1\\x\in Z\end{matrix}\right.\)
d)\(\left|x-4\right|+\left(3+3\right)=7\)
\(\left|x-4\right|+6=7\)
\(\left|x-4\right|=7-6\)
\(\left|x-4\right|=1\)
\(\Rightarrow\left\{{}\begin{matrix}x-4=1\\x-4=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1+4\\x=-1+4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a; \(x\) - \(\dfrac{3}{5}\) = 1 - \(\dfrac{4}{5}\) + \(\dfrac{1}{6}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{30}{30}\) - \(\dfrac{24}{30}\) + \(\dfrac{5}{30}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{6}{30}\) + \(\dfrac{5}{30}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{11}{30}\)
\(x\) = \(\dfrac{11}{30}\) + \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{11}{30}\) + \(\dfrac{18}{30}\)
\(x\) = \(\dfrac{29}{30}\)
Vậy \(x\) = \(\dfrac{29}{30}\)
b; (- \(\dfrac{10}{4}\)) + \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\) thế \(x\) của em đâu nhỉ???
c; - \(\dfrac{3}{2}\) + (\(x\) - \(\dfrac{1}{2}\)) = \(\dfrac{1}{2}\)
\(x\) - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) + \(\dfrac{3}{2}\)
\(x\) - \(\dfrac{1}{2}\) = 2
\(x\) = 2 + \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{4}{2}\) + \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình ko đáng cái j linh tinh hết đây là các bài toán mà mình ko giải đc
b. (x-7)x+1-(x-7)x+11=0
(x-7)x+1.[1-(x-7)10]=0
=> (x-7)x+1=0 hoặc 1-(x-7)10=0
• (x-7)x+1= 0 => x-7=0 => x=7
• 1-(x-7)10=0=> (x-7)10=1=>x-7=1 hoặc x-7=-1 => x=8 hoặc x=6
Vậy x thuộc {6;7;8}
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x\ge\frac{3}{2}\mid:2x-3=\frac{1}{4}\Rightarrow2x=\frac{13}{4}\Rightarrow x=\frac{13}{8}\left(TM\right)\\x< \frac{3}{2}\mid:3-2x=\frac{1}{4}\Rightarrow2x=\frac{11}{4}\Rightarrow x=\frac{11}{8}\left(TM\right)\end{cases}.}\)
b) \(\Leftrightarrow\left|x-1\right|=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}x\ge1\mid:x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\left(TM\right)\\x< 1\mid:1-x=\frac{3}{4}=>x=\frac{1}{4}\left(TM\right)\end{cases}}\)
c) \(\frac{3}{5\left(x-\frac{5}{6}\right)}-\frac{1}{2\left(\frac{3}{2}-1\right)}=-\frac{1}{4}\Leftrightarrow\frac{3}{\frac{5\left(6x-5\right)}{6}}-\frac{1}{2\cdot\frac{1}{2}}=-\frac{1}{4}\Leftrightarrow\frac{18}{5\left(6x-5\right)}=-\frac{1}{4}+1\)
\(\Leftrightarrow\frac{18}{5\left(6x-5\right)}=\frac{3}{4}\Leftrightarrow6x-5=\frac{24}{5}\Leftrightarrow6x=\frac{49}{5}\Leftrightarrow x=\frac{49}{30}\)
d) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Leftrightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\Leftrightarrow2\cdot\frac{x+1-2}{2\left(x+1\right)}=\frac{2015}{2016}\Leftrightarrow\frac{x-1}{x+1}=\frac{2015}{2016}\)
\(\Leftrightarrow2016x-2016=2015x+2015\Leftrightarrow x=2015+2016=4031\)
Vậy x = 4031.
![](https://rs.olm.vn/images/avt/0.png?1311)
Sorry mink mới lớp 5 nên ko thể giúp bn lm bài toán này thành thật xin lỗi
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}+\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Dễ thấy \(\frac{1}{10}>\frac{1}{11}>\frac{1}{12}>\frac{1}{13}>\frac{1}{14}\)nên biểu thức trong ngoặc thứ hai \(\ne\)0
Do đó \(x+1=0\)\(\Rightarrow x=0-1=-1\)
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+4}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2000}>\frac{1}{2001}>\frac{1}{2002}>\frac{1}{2003}\)nên biểu thức trong ngoặc thứ hai phải \(\ne\)0
Do đó \(x+2004=0\)\(\Rightarrow x=0-2004=-2004\)
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{10}-1\right)=\left(\dfrac{1-2}{2}\right)\left(\dfrac{1-3}{3}\right)...\left(\dfrac{1-10}{10}\right)=\dfrac{-1}{2}.\dfrac{-2}{3}...\dfrac{-9}{10}\)
Vì có tất cả 9 (lẻ) thừa số hạng nên A sẽ có dấu âm
\(A=\dfrac{-1}{2}.\dfrac{-2}{3}...\dfrac{-9}{10}=-\left(\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{9}{10}\right)=\dfrac{-1}{10}\)
Vậy \(A=\dfrac{-1}{10}\)