K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

A=\(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+..........+\left(\frac{1}{33}+\frac{1}{34}+........+\frac{1}{64}\right)\)

\(>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+.......+\left(\frac{1}{64}+\frac{1}{64}+......+\frac{1}{64}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(=1+1+1+1\)

\(=4=B\)

\(\Rightarrow A>B\)

19 tháng 8 2019

bai nao vay

20 tháng 8 2019

\(A=1.\left(-1\right)+3.\left(-1\right)^2+5.\left(-1\right)^3.7+\left(-1\right)^4+9.\left(-1\right)^5\)

\(A=1.\left(-1\right)+3.1+5.\left(-1\right).7+1+9.\left(-1\right)\)

\(A=\left(-1\right)+3+\left(-5\right).7+1+\left(-9\right)\)

\(A=-1+3-35+1-9\)

\(A=-41\)

30 tháng 9 2017

a) \(A=1+2+2^2+...+2^{63}\)

\(\Rightarrow2A=2.\left(1+2+2^2+...+2^{63}\right)\)

\(\Rightarrow2A=2+2^2+...+2^{64}\)

\(\Rightarrow2A-A=2+2^2+...+2^{64}-\left(1+2+2^2+...+2^{63}\right)\)

\(\Rightarrow A=2+2^2+...+2^{64}-1-2-2^2-...-2^{63}\)

\(\Rightarrow A=2^{64}-1\)

Vì \(2^{64}-1=2^{64}-1\Rightarrow A=B\)

b) \(A=3^4+3^5+...+3^{20}\)

\(\Rightarrow3A=3^5+3^6+...+3^{21}\)

\(\Rightarrow3A-A=3^5+3^6+...+3^{21}-3^4-3^5-...-3^{20}\)

\(\Rightarrow2A=3^{21}-3^4\)

\(\Rightarrow A=\frac{3^{21}-3^4}{2}\)

Mà \(B=\frac{3^{21}-3^4}{2}\Rightarrow A=B\)

5 tháng 5 2017

giúp mình nhé

7 tháng 5 2017

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}+\dfrac{1}{64}\\ =\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{64}\right)\)

Ta thấy:

\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)

\(\dfrac{1}{5};\dfrac{1}{6};\dfrac{1}{7}\) lớn hơn \(\dfrac{1}{8}\)

\(\dfrac{1}{9};\dfrac{1}{10};...;\dfrac{1}{15}\) lớn hơn \(\dfrac{1}{16}\)

\(\dfrac{1}{17};\dfrac{1}{18};...;\dfrac{1}{31}\) lớn hơn \(\dfrac{1}{32}\)

\(\dfrac{1}{33};\dfrac{1}{34};...;\dfrac{1}{63}\) lớn hơn \(\dfrac{1}{64}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)

Vậy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)(ĐPCM)

1 tháng 3 2016

Ai làm hộ mình với