Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(a+b=3\Rightarrow a+(b-2)=1\Rightarrow b-2=1-a\)
Ta có:
\(f(x)=\frac{9^x}{9^x+3}\Rightarrow f(a)=\frac{9^a}{9^a+3}\) (1)
\(f(b-2)=f(1-a)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9^a\left(\frac{9}{9^a}+3\right)}\)
\(=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\) (2)
Từ (1),(2) suy ra \(f(a)+f(b-2)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=\frac{9^a+3}{9^a+3}=1\)
Đáp án A
Lời giải:
Gọi \(D=(a,b,c)\). Tính toán: \(\left\{\begin{matrix} \overrightarrow{AB}=(2,2,1)\\ \overrightarrow{BC}=(2,-7,1)\\ \overrightarrow{AC}=(4,-5,2)\end{matrix}\right.\)
Thấy \(\overrightarrow{AB}.\overrightarrow{AC}=0\Rightarrow\overrightarrow{AB}\perp \overrightarrow{AC}\) nên \(A,B,C,D\) là bốn đỉnh của hình chữ nhật $ABDC$
Ta có \(\overrightarrow{AC}+\overrightarrow{AB}=\overrightarrow{AD}\Leftrightarrow (4,-5,2)+(2,2,1)=(a-2,b-1,c+3)\)
\(\Leftrightarrow \left\{\begin{matrix} a-2=6\\ b-1=-3\\ c+3=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=8\\ b=-2\\ c=0\end{matrix}\right.\)
Chọn B