Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
Sửa đề : \(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\)
\(M=\left(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{1\dfrac{1}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{7}{11}\right)}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{6}+\dfrac{7}{10}}\right):\dfrac{2021}{2022}\\ =\left(\dfrac{2}{7}-\dfrac{\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}}{\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{5}\right)}\right):\dfrac{2021}{2020}\\ =\left(\dfrac{2}{7}-\dfrac{2}{7}\right):\dfrac{2021}{2022}=0\)
Ta có:
\(\dfrac{1}{3}\times\dfrac{12}{12}=\dfrac{12}{36};\)
\(\dfrac{1}{6}\times\dfrac{6}{6}=\dfrac{6}{36};\)
\(\dfrac{1}{10}\times\dfrac{3}{3}=\dfrac{3}{30};\)
\(\dfrac{1}{15}\times\dfrac{2}{2}=\dfrac{2}{30};\)
\(\dfrac{1}{21}\times\dfrac{4}{4}=\dfrac{4}{84};\)
\(\dfrac{1}{28}\times\dfrac{3}{3}=\dfrac{3}{84};\)
\(A=\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{3}{30}+\dfrac{2}{30}+\dfrac{4}{84}+\dfrac{3}{84}+\dfrac{1}{36}\)
\(=\left(\dfrac{12}{36}+\dfrac{6}{36}+\dfrac{1}{36}\right)+\left(\dfrac{3}{30}+\dfrac{2}{30}\right)+\left(\dfrac{4}{84}+\dfrac{3}{84}\right)\)
\(=\dfrac{19}{36}+\dfrac{5}{30}+\dfrac{7}{84}\)
\(=\dfrac{19}{36}+\dfrac{1}{6}+\dfrac{1}{12}\)
\(=\dfrac{19}{36}+\dfrac{6}{36}+\dfrac{3}{36}\)
\(=\dfrac{28}{36}=\dfrac{7}{9}\)
Vậy: \(A=\dfrac{7}{9}\)
A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)
A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)
A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)
Mấy bài này bạn tự làm đi, chuyển vế tìm x gần giống cấp I mà.
b)\(\dfrac{-3}{5}.x=\dfrac{1}{4}+0,75\)
=>\(\dfrac{-3}{5}.x=1\)
=>\(x=1:\dfrac{-3}{5}\)
=>\(x=\dfrac{-5}{3}\)
Vậy \(x=\dfrac{-5}{3}\)
\(=2-\left(\dfrac{5}{3}-\dfrac{7}{6}+\dfrac{9}{10}-...-\dfrac{19}{45}\right)\)
\(=2-2\left(\dfrac{5}{6}-\dfrac{7}{12}+\dfrac{9}{20}-...-\dfrac{19}{90}\right)\)
\(=2-2\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{5}-...-\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=2-2\cdot\dfrac{4}{10}=2-\dfrac{8}{10}=2-\dfrac{4}{5}=\dfrac{6}{5}\)
\(F=\dfrac{5}{6}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(F=\dfrac{5}{6}+\dfrac{41}{6}\left(\dfrac{225}{20}-\dfrac{37}{4}\right):\dfrac{25}{3}\)
\(F=\dfrac{5}{6}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(F=\dfrac{5}{6}+\dfrac{41}{25}.\dfrac{3}{25}\)
\(F=\dfrac{5}{6}+\dfrac{41}{25}\)
\(F=\dfrac{371}{150}\)
\(D=\left(\dfrac{136}{15}-\dfrac{28}{5}+\dfrac{62}{10}\right)\times\dfrac{21}{24}\)
\(D=\left(\dfrac{272}{30}-\dfrac{168}{30}+\dfrac{186}{30}\right)\times\dfrac{21}{24}\)
\(D=\dfrac{290}{30}\times\dfrac{21}{24}\)
\(D=\dfrac{29}{3}\times\dfrac{7}{8}\)
\(D=\dfrac{203}{24}\)
\(=\dfrac{85}{18}:\dfrac{85}{9}-\dfrac{136}{45}:\dfrac{136}{15}=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\)
Để tính tổng của biểu thức này, chúng ta cần thực hiện các phép cộng và trừ theo thứ tự từ trái sang phải.
\[4 + \frac{5}{6} - \frac{1}{9} \times \frac{1}{10} - \frac{7}{12} + \frac{1}{36} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{9} \times \frac{9}{5} + 1 - \frac{1}{3}\]
Đầu tiên, chúng ta sẽ làm các phép tính liên quan đến phân số:
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{7}{12} + \frac{1}{36} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
Tiếp theo, chúng ta sẽ tổng hợp các phân số:
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{18}{90} + \frac{60}{180} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{2}{10} + \frac{10}{30} - \frac{2}{10} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{36 + 35}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{2}{6} - \frac{1}{5} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
Tiếp theo, chúng ta sẽ tính tổng các số nguyên:
\[= 4 - 3 + 1\]
Cuối cùng, chúng ta sẽ tổng hợp các phân số:
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{30}{90}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6}
a) 1 - 3 + 5 - 7 + 9 - 11 + ... + 2021 - 2023
Số số hạng:
(2023 - 1) : 2 + 1 = 1012 (số)
Số cặp số:
1012 : 2 = 506 (cặp)
Tổng là:
1 - 3 + 5 - 7 + 9 - 11 + ... + 2021 - 2023
= (1 - 3) + (5 - 7) + (9 - 11) + ... + (2021 - 2023)
= -2.506
= -1012
b) Xem lại đề!