K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

trong vòng 30 giây nhá

2 tháng 4 2015

Vì ta có 1 - 1/2010 = 0/2010 = 0 nên suy ra biểu thức A = 0

2 tháng 4 2015

A=\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right)...\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)

A=\(\frac{2009}{2010}.\frac{2008}{2010}...0.\frac{-1}{2010}\)

A=0

15 tháng 4 2017

Ta có:\(1-\frac{2010}{2010}=1-1=0\)

Tích A= (1-1/2010).(1-2/2010).(1-3/2010)....(1-2011/2010) chứa thừa số \(1-\frac{2010}{2010}=0\)

Vậy tích A=(1-1/2010).(1-2/2010).(1-3/2010)....(1-2011/2010)=0(Vì có chứa thừa số 0)

4 tháng 5 2017

Ta có \(1-\frac{2010}{2010}=1-1=0\)

Mà \(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)

Nên \(A=...0\)\(=0\)

\(A=\dfrac{2009}{2010}\cdot\dfrac{2008}{2010}\cdot...\cdot\dfrac{2}{2010}\cdot\dfrac{1}{2010}\cdot\dfrac{0}{2010}\cdot\dfrac{-1}{2010}\)

=0

Bài 2:

1: \(2A=2+2^2+...+2^{2011}\)

=>\(A=2^{2011}-1>B\)

2: \(A=\left(2010-1\right)\left(2010+1\right)=2010^2-1< B\)

3: \(A=1000^{10}\)

\(B=2^{100}=1024^{10}\)

mà 1000<1024

nên A<B

5: \(A=3^{450}=27^{150}\)

\(B=5^{300}=25^{150}\)

mà 27>25

nên A>B

1)

a)     A = 21 + 22 + … + 22010

    = (21 + 22) + (23 + 24) + … + (22009 + 22010)

    = 2(1 + 2) + 23(1 + 2) + … + 22009(1 + 2)

    = 2.3 + 23.3 + … + 22009.3

Vì 3 chia hết cho 3 nên A chia hết cho 3.

  A = 21 + 22 + … + 22010

     = (21 + 22 + 23) + (24 + 25 + 26) + … + (22008 + 22009 + 22010)

     = 2(1 + 2 + 22) + 24(1 + 2 + 22) + … + 22008(1 + 2 + 22)

     = 2.7 + 24.7 + … + 22008.7

Vì 7 chia hết cho 7 nên A chia hết cho 7.

b)   B = 31 + 32 + … + 32010

          = (31 + 32 )+ (33 + 34) + (35 + 36) + … + (32009 + 32010)

          = 3(1 + 3) + 33(1 + 3) + … + 32009(1 + 3)

          = 3.4+ 33.4 + … + 32009.4

Vì 4 chia hết cho 4 nên B chia hết cho 4.

B = 31 + 32 + … + 32010

    = (31 + 32 + 33) + (34 + 35 + 36) + … + (32008 + 32009 + 32010)

    = 3(1 + 3 + 32) + 34(1 + 3 + 32) + … + 32008(1 + 3 + 32)

    = 3.13 + 34.13 + … + 32008.13

Vì 13 chia hết cho 13 nên B chia hết cho 13.

c)     C = 51 + 52 + … + 52010

           = (51 + 52 +53 + 54) + … + (52007 + 52008 + 52009 + 52010)

           = 5(1 + 5 + 52 + 53) + … + 52007(1 + 5 + 52 + 53)

           = 5.156 + … + 52007.156

Vì 156 chia hết cho 6, 12 nên C chia hết cho 6 và 12.

2) 

a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

2)a)     Ta có: A = 20 + 21 + 22 + … + 22010 = 22011 – 1

     Vậy A = B ( vì đều bằng 22011 – 1 )

b)    Ta có: A =  2009.2011 = 2009.(2010 + 1) = 2009.2010 + 2009

           B =  20102 = 2010.2010 = (2009 + 1).2010 = 2009.2010 + 2010

Vì ở A và B đều có 2009.2010 mà 2009 < 2010 nên A < B.

c)     Ta có: A = 1030 = 103.10 = (103)10 = 10010

            B = 2100 = 210.10 = (210)10  = 102410

Vì 10010 < 102410 nên A < B.

d)    Ta có: A = 333444 = 3334.111 = (3334)111

                B = 444333 = 4443.111 = (4443)111

Ta so sánh 3334 và 4443

3334 = (3.111)4 = 34.1114 = 81.111.1113

4443 = (4.111)3 = 43.1113 = 64.1113

Vì 81.111 > 64 => 3334 > 4443 => (3334)111 > (4443)111 => A > B.

2 tháng 5 2017

\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-\frac{2011}{2010}\right)\)

\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)

\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right).....\left(1-1\right).\left(1-\frac{2011}{2010}\right)\)

\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)\left(1-\frac{3}{2010}\right)....0.\left(1-\frac{2011}{2010}\right)\)

\(A=0\)

2 tháng 5 2017

\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2011}{2010}\right)\)

\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)

\(A=\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).\left(1-\frac{3}{2010}\right)...0.\left(1-\frac{2011}{2010}\right)\)

\(\Rightarrow A=0\)

( Vì 0 nhân với số nào cũng bằng 0 )