
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+....+\frac{1}{200^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2.100\right)^2}\)
\(B=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.100^2}=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{100^2}\)
\(B=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\right)=\frac{1}{4}.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{\frac{1}{4}A}=\frac{A}{\frac{A}{4}}=A.\frac{4}{A}=4\)


ta có: B=1/4^2 +1/6^2+......+1/200^2
B= 1/2^2 x(1/2^2+1/3^2 +1/4^2+......+1/100^2)
B=1/4 x(A)
suy ra: A/B= A / 1/4 x A
A/B= 4
\(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+200}\)
\(=\frac{1}{\frac{1.2}{2}}++\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{200.201}{2}}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{200.201}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{200}-\frac{1}{201}\right)=2\left(1-\frac{1}{201}\right)\)
\(=2.\frac{200}{201}=\frac{400}{201}\)