
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Biểu thức √4(1+6x+9x2)4(1+6x+9x2) khi x<−13x<−13 bằng:
A. 2(x+3x)2(x+3x)
B. −2(1+3x)−2(1+3x)
C. 2(1−3x)2(1−3x)
D. 2(−1+3x)2(−1+3x)
Đáp án :B
giải:
\(\sqrt{4.\left(1+6X+9X^2\right)}\left(1\right)=\sqrt{2^2.\left(3X+1\right)^2}\)
\(=2\left|3x+1\right|\)
Mà \(x< -\frac{1}{3}\Rightarrow\left(1\right)=-2.\left(1+3x\right)\)

Tự nhiên trả lời làm cái gì
Đăng lên để hỏi
Chứ không phải trả lời nha o0o I am a studious person CTV

\(\left\{{}\begin{matrix}\sqrt[3]{3x+1}=a\\\sqrt[3]{3x-1}=b\end{matrix}\right.\) \(\Rightarrow a^3-b^3=2\) (1)
\(a^2+b^2+ab=1\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=a-b\)
\(\Leftrightarrow a^3-b^3=a-b\) (2)
Từ (1) và (2) \(\Rightarrow a-b=2\Rightarrow b=a-2\)
\(\Rightarrow a^2+\left(a-2\right)^2+a\left(a-2\right)=1\Leftrightarrow3a^2-6a+3=0\Rightarrow a=1\)
\(\Rightarrow\sqrt[3]{3x+1}=1\Rightarrow3x+1=1\Rightarrow x=0\)

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!

\(\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{9x^2+18x+8}+1\right)=2\)
\(\Leftrightarrow\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{\left(3x+4\right)\left(3x+2\right)}+1\right)=2\)
Đặt \(\left\{{}\begin{matrix}\sqrt{3x+4}=a\\\sqrt{3x+2}=b\end{matrix}\right.\)\(\left(a,b\ge0\right)\), ta có hpt:
\(\left\{{}\begin{matrix}a^2-b^2=2\left(1\right)\\\left(a-b\right)\left(ab+1\right)=2\end{matrix}\right.\)
\(\Leftrightarrow a^2-b^2=\left(a-b\right)\left(ab+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(ab+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-ab-1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(1-a\right)=0\)
* Trường hợp 1: \(a-b=0\Leftrightarrow a=b\)
\(\Rightarrow\sqrt{3x+4}=\sqrt{3x+2}\)
\(\Leftrightarrow0x=\sqrt{2}-2\)
=> Pt vô no
* Trường hợp 2: \(b-1=0\Leftrightarrow b=1\)
\(\Rightarrow\sqrt{3x+2}=1\)
\(\Leftrightarrow x=-\dfrac{1}{3}\left(n\right)\)
* Trường hợp 3: \(a-1=0\Leftrightarrow a=1\)
\(\Rightarrow\sqrt{3x+4}=1\)
\(\Rightarrow x=-1\left(l\right)\)
Vậy x = \(-\dfrac{1}{3}\)
\(9x^2-\left(3x+2\right)\sqrt{3x-1}+2=3x\left(1\right)\)\(\left(x\ge\frac{1}{3}\right)\)
Đặt \(\sqrt{3x-1}=a\ge0\)
\(\Rightarrow\hept{\begin{cases}3x=a^2+1\\3x+2=a^2+3\\3x-1=a^2\end{cases}}\)
Pt (1) \(\Leftrightarrow3x\left(3x-1\right)-\left(3x+2\right)\sqrt{3x-1}+2=0\)
\(\Leftrightarrow\left(a^2+1\right)a^2-\left(a^2+3\right)a+2=0\)
\(\Leftrightarrow a^3+a^2-a^3-3a+2=0\)
\(\Leftrightarrow a^2-3a+2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)
TH1: a=1
\(\Rightarrow\sqrt{3x-1}=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow x=\frac{2}{3}\left(tm\right)\)
TH2: a=2
\(\Rightarrow\sqrt{3x-1}=2\)
\(\Leftrightarrow3x-1=4\)
\(\Leftrightarrow x=\frac{5}{3}\left(tm\right)\)
Vậy pt có tập nghiệm \(S=\left\{\frac{2}{3};\frac{5}{3}\right\}\)