K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2022

9x - 4.3x -45 = 0

(3x)2 - 4.3x - 45 = 0

đặt 3x = t >0  ta có 

t2 -4t - 45 = 0

Δ = (-42) - 4.(-45)

Δ = 16 + 180  = 196

\(\left[{}\begin{matrix}t_1=9\\t_2=-5(loại)\end{matrix}\right.\) 

3x = 9 ⇒x = 2

 

 

 

 

23 tháng 11 2023

1: \(2^x=64\)

=>\(x=log_264=6\)

2: \(2^x\cdot3^x\cdot5^x=7\)

=>\(\left(2\cdot3\cdot5\right)^x=7\)

=>\(30^x=7\)

=>\(x=log_{30}7\)

3: \(4^x+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)

=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)

=>\(2^x-1=0\)

=>\(2^x=1\)

=>x=0

4: \(9^x-4\cdot3^x+3=0\)

=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)

Đặt \(a=3^x\left(a>0\right)\)

Phương trình sẽ trở thành:

\(a^2-4a+3=0\)

=>(a-1)(a-3)=0

=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)

=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)

=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)

=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)

=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)

=>\(3^{x+1}-2=0\)

=>\(3^{x+1}=2\)

=>\(x+1=log_32\)

=>\(x=-1+log_32\)

6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\) 

=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)

Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)

Phương trình sẽ trở thành:

\(\dfrac{1}{b}+b=2\)

=>\(b^2+1=2b\)

=>\(b^2-2b+1=0\)

=>(b-1)2=0

=>b-1=0

=>b=1

=>\(\left(2+\sqrt{3}\right)^x=1\)

=>x=0

7: ĐKXĐ: \(x^2+3x>0\)

=>x(x+3)>0

=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)

=>\(x^2+3x=4^1=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

NV
26 tháng 3 2023

Đặt \(3^x=t>0\Rightarrow t^2-2\left(7-x\right)t+45-18x=0\)

\(\Delta'=\left(7-x\right)^2-\left(45-18x\right)=\left(x+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=7-x+x+2=9\\t=7-x-\left(x+2\right)=5-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3^x=9\Rightarrow x=2\\3^x=5-2x\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow3^x+2x-5=0\)

Nhận thấy \(x=1\) là 1 nghiệm của (1)

Xét hàm \(f\left(x\right)=3^x+2x-5\Rightarrow f'\left(x\right)=3^x.ln3+2>0;\forall x\)

\(\Rightarrow f\left(x\right)\) đồng biến trên R nên \(f\left(x\right)\) có tối đa 1 nghiệm

\(\Rightarrow x=1\) là nghiệm duy nhất của (1)

Vậy pt đã cho có 2 nghiệm thực \(x=\left\{1;2\right\}\)

14 tháng 4 2016

\(1+\log_2\left(9^x-6\right)=\log_2\left(4.3^x-6\right)\)

Điều kiện : \(\begin{cases}9^x>6\\3^x>\frac{3}{2}\end{cases}\) \(\Leftrightarrow x>\log_96\)

\(1+\log_2\left(9^x-6\right)=\log_2\left(4.3^x-6\right)\Leftrightarrow9^x-2.3^x-3=0\)

                                                        \(\Leftrightarrow\begin{cases}3^x=-1\\3^x=3\end{cases}\)  \(\Leftrightarrow3^x=3\Leftrightarrow x=1\) (thỏa mãn điều kiện)

Kết luận \(x=1\)

 

30 tháng 9 2017
  1. hai
18 tháng 8 2018

Điều kiện xác định : 3\(^x\)>2

Ta có: \(\log_2\left(4.3^x-6\right)=\log_2\left(2\sqrt{2}\right).\log_{2\sqrt{2}}\left(4.3^x-6\right)\)

\(\log_2\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\left(1\right)\)\(\Leftrightarrow\log_2\left(2\sqrt{2}\right)\log_{2\sqrt{2}}\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\)

\(\Rightarrow\dfrac{3}{2}\log_{2\sqrt{2}}\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\)\(\Leftrightarrow\dfrac{3}{2}[\log_{2\sqrt{2}}\left(4.3^x-6\right)-\log_{2\sqrt{2}}\left(9^X-6\right)]=1\)

\(\Leftrightarrow\log_{2\sqrt{2}}\left(\dfrac{4.3^X-6}{9^X-6}\right)=\dfrac{2}{3}\)\(\Leftrightarrow\log_{2\sqrt{2}}\left(\dfrac{4.3^X-6}{9^X-6}\right)=\log_{2\sqrt{2}}\left(2\right)\)

\(\Leftrightarrow\dfrac{4.3^X-6}{9^X-6}=2\Leftrightarrow4.3^X-6=2.9^X-12\)\(\Leftrightarrow2.(3^X)^2-4.3^X-6=0\Rightarrow\left[{}\begin{matrix}3^X=3\left(TM\right)\\3^X=-1\left(loai\right)\end{matrix}\right.\)

\(\Rightarrow x=1.\)Vậy x=1 là nghiệm của phương trình (1)

NV
20 tháng 12 2020

Bạn coi lại đề câu a, chỗ \(\log_5-x\) đó

b.

\(\Leftrightarrow9^x-3^x-2.3^x-2=0\)

\(\Leftrightarrow3^x\left(3^x-1\right)-2\left(3^x-1\right)=0\)

\(\Leftrightarrow\left(3^x-2\right)\left(3^x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3^x=2\\3^x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\log_32\\x=0\end{matrix}\right.\)

NV
18 tháng 3 2023

\(\int\limits^9_0f\left(x\right)dx=F\left(9\right)-F\left(0\right)\)

\(\Rightarrow F\left(9\right)-F\left(0\right)=9\)

\(\Rightarrow F\left(9\right)=9+F\left(0\right)=9+3=12\)

24 tháng 3 2018

Đáp án C

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

18 tháng 11 2017

Chọn C