Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{32^4\cdot9^5}{3^8\cdot2^{10}}=\dfrac{2^{20}\cdot3^{10}}{3^8\cdot2^{10}}=2^{10}\cdot3^2\)
\(\dfrac{8^2.125.9^2-32.5^3.81}{20^3.3^4-6^8.5^4}\)
\(=\dfrac{2^6.5^3.3^4-2^5.5^3.3^4}{4^3.5^3.3^4-2^8.3^8.5^4}\)
\(=\dfrac{2^6.5^3.3^4-2^5.5^3.3^4}{2^6.5^3.3^4-2^8.3^8.5^4}\)
\(=\dfrac{2^5.5^3.3^4\left(2-1\right)}{2^6.5^3.3^4\left(1-2^2.3^4.5\right)}\)
\(=\dfrac{2^5.5^3.3^4.1}{2^6.5^3.3^4\left(1-810\right)}\)
\(=\dfrac{1}{2.\left(-809\right)}\)
\(=-\dfrac{1}{1618}\)
\(\frac{2^{4-x}}{16^5}=32^6\)
=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)
=> \(2^{4-x}=2^{30}.2^{20}\)
=> \(2^{4-x}=2^{50}\)
=> 4 - x = 50
=> x = 4 - 50 = -46
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)
=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)
=> \(3^{2x+3}=3^{28}.3^6\)
=> \(3^{2x+3}=3^{34}\)
=> 2x + 3 = 34
=> 2x = 34 - 3
=> 2x = 31
=> x = 31/2
8 )
- 12 = 1\(|x+12|=13\)
\(\Rightarrow\orbr{\begin{cases}x+12=13\\x+12=-13\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-25\end{cases}}\)
Vậy \(x\in\left\{1;-25\right\}\)
9) 135 -\(|9-x|=35\)
\(|9-x|=135-35\)
\(|9-x|=100\)
\(\Rightarrow\orbr{\begin{cases}9-x=100\\9-x=-100\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-91\\x=109\end{cases}}\) Vậy x\(\in\left\{-91;109\right\}\) 10) 17+x-(352-400)=-32 17+x-352+400=-32 17+x-352 =(-32) - 400 17+x-352 =-432 17+x =(-432) + 352 17+x =-80 x =(-80) - 17 x =-97 Vậy x =-97 11) 2130 - (x+136) + 72 =-64 2130 - (x+136) =(-64) -72 2130 - (x+136) =-136 (x +136) = 2130 -(-136) x+136 =2266 x =2266 - 136 x =2130 Vậy x=2130 do sap an cơm nên chiều mình sẽ giải tiếp nha! sorryy
12) (x-2) - (-8) = -137
(x-2) +8 =-137
(x-2) =(-137) - 8
x-2 =-145
Vậy x=-145
13) 10-\(|x+3|=-4.\left(-10\right)\) 10- \(|x+3|=40\) \(|x+3|=\) 40+10 \(|x+3|=50\)
\(\Rightarrow\orbr{\begin{cases}x+3=50\\x+3=-50\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=50-3\\x=\left(-50\right)-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=20\\x=-53\end{cases}}\)
Vậy x\(\in\left\{20;-53\right\}\)
a:=>3x=15
=>x=5
b: =>x+3=0,96
=>x=-2,04
c: =>x^2=36
=>x=6 hoặc x=-6
`a, 3/4=(3x)/20`
`3x*4=3*20`
`3x*4=60`
`3x=60 \div 4`
`3x=15`
`x=15 \div 3`
`x=5`
`b, (1,2)/(x+3)=5/4`
`1,2*4=(x+3)*5`
`4,8=(x+3)*5`
`x+3= 4,8 \div 5`
`x+3=0,96`
`x=0,96-3`
`x=-2,04`
`c, (x^2)/32=9/8`
`x^2*8=32*9`
`x^2*8=288`
`x^2=288 \div 8`
`x^2=36`
`x^2=(+-6)^2`
`-> \text {x= 6 hoặc -6}`
P/s: Vì lười nên chị viết tắt nha.
1) Áp dụng tính chất... ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=-\frac{32}{8}=-4\)
\(\Rightarrow\hept{\begin{cases}x=-4.3=-12\\y=-4.5=-20\end{cases}}\)
2) Có: \(\frac{x}{y}=\frac{9}{11}\Rightarrow\frac{x}{9}=\frac{y}{11}\)
Áp dụng tính chất... ta có: \(\frac{x}{9}=\frac{y}{11}=\frac{x+y}{9+11}=\frac{60}{20}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.9=27\\y=3.11=33\end{cases}}\)
3) tương tự 2)
4), 8) và 9) tương tự 1)
5) Có: \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất... (Tương tự các phần trên).
6) và 7) tương tự 5)
10) 4x = 5y phải không ? Vậy vẫn tương tự 5)
a: \(\dfrac{5^5}{5^x}=5^{18}\)
=>5-x=18
hay x=-13
b: \(\dfrac{2^{4-x}}{16^5}=32^6\)
\(\Leftrightarrow2^{4-x}=\left(2^5\right)^6\cdot\left(2^4\right)^5=2^{30+20}=2^{50}\)
=>4-x=50
hay x=-46
c: \(\dfrac{2^{2x-3}}{4^{10}}=8^3\cdot16^5\)
\(\Leftrightarrow2^{2x-3}=2^9\cdot2^{20}\cdot2^{20}=2^{49}\)
=>2x-3=49
=>2x=52
hay x=26
d: \(\dfrac{2^3}{2^x}=4^5\)
\(\Leftrightarrow2^{3-x}=2^{10}\)
=>3-x=10
hay x=-7
e: \(9\cdot5^x=6\cdot5^6+3\cdot5^6\)
\(\Leftrightarrow9\cdot5^x=9\cdot5^6\)
\(\Leftrightarrow5^x=5^6\)
hay x=6
f: \(7\cdot2^x=2^9+5\cdot2^8\)
\(\Leftrightarrow2^x\cdot7=2^8\cdot7\)
\(\Leftrightarrow2^x=2^8\)
hay x=8
\(x^2=1\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(x^2=3\Rightarrow\left[{}\begin{matrix}x=-\sqrt{3}\\x=\sqrt{3}\end{matrix}\right.\)
\(x^2=5\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=\sqrt{5}\end{matrix}\right.\Rightarrow x=-\sqrt{5}\left(vì.x< 0\right)\)
\(x^2=7\Rightarrow\left[{}\begin{matrix}x=-\sqrt{7}\\x=\sqrt{7}\end{matrix}\right.\Rightarrow x=-\sqrt{7}\left(vì.x< 0\right)\)
\(x^2=9\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
\(\left(x-2\right)^2=2\Rightarrow\left[{}\begin{matrix}x-2=-\sqrt{2}\\x-2=\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2-\sqrt{2}\\x=2+\sqrt{2}\end{matrix}\right.\)
\(\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x-2=-2\\x-2=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\left(x-6\right)^2=6\Rightarrow\left[{}\begin{matrix}x-6=-\sqrt{6}\\x-6=\sqrt{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6-\sqrt{6}\\x=6+\sqrt{6}\end{matrix}\right.\)
\(\left(x-8\right)^2=8\Rightarrow\left[{}\begin{matrix}x-8=-2\sqrt{2}\\x-8=2\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8-2\sqrt{2}\\x=2+2\sqrt{2}\end{matrix}\right.\)
\(\left(x-10\right)^2=10\Rightarrow\left[{}\begin{matrix}x-10=-\sqrt{10}\\x-10=\sqrt{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-\sqrt{10}\\x=10+\sqrt{10}\end{matrix}\right.\)
\(\left(x-\sqrt{3}\right)^2=3\Rightarrow\left[{}\begin{matrix}x-\sqrt{3}=-\sqrt{3}\\x-\sqrt{3}=\sqrt{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{3}\end{matrix}\right.\)
\(\left(x-\sqrt{5}\right)^2=5\Rightarrow\left[{}\begin{matrix}x-\sqrt{5}=-\sqrt{5}\\x-\sqrt{5}=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\sqrt{5}\end{matrix}\right.\)
a) 32.x+2=1342176728
32.x=134217728-2
32.x=134217726
x=134217726:32
x=4194303,938
9663676416
9663676416