Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ A kẻ đường thẳng m vuông góc với BC tại trung điểm D của BC.
\( \Rightarrow \) AD là đường trung tuyến của BC.
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
\(\begin{array}{l}\widehat {ADB} = \widehat {ADC} = {90^0}\\AD:chung\\BD = CD\left( {gt} \right)\\ \Rightarrow \Delta ABD = \Delta ACD\left( {c - g - c} \right)\end{array}\)
\( \Rightarrow AB = AC\)(2 cạnh tương ứng)
\( \Rightarrow \Delta ABC\)cân tại A (đpcm).
Xét tam giác ABC có AI là đường trung trực vừa là đường phân giác
vì AI là đường trung trực nên AI vuông góc với BC và I là trung điểm cuả BC
xét 2 tam giác vuông ABI và tam giác vuông ACI có;
IA chung
góc BAI=gócCAI (do AI là phân giác)
do đó tam giác BAI =tam giác CAI
suy ra AB=AC (2 cạnh tương ứng)
suy ra tam giác ABC cân tại A (định nghĩa tam giác cân)
bạn tham khảo link này nha:https://hoc24.vn/hoi-dap/tim-kiem?id=137279&q=Ch%E1%BB%A9ng%20minh%20%3A%20trong%20m%E1%BB%99t%20tam%20gi%C3%A1c%20c%C3%A2n%2C%20%C4%91%C6%B0%E1%BB%9Dng%20ph%C3%A2n%20gi%C3%A1c%20xu%E1%BA%A5t%20ph%C3%A1t%20t%E1%BB%AB%20%C4%91%E1%BB%89nh%20%C4%91%E1%BB%93ng%20th%E1%BB%9Di%20l%C3%A0%20%C4%91%C6%B0%E1%BB%9Dng%20trung%20tuy%E1%BA%BFn%20%E1%BB%A9ng%20v%E1%BB%9Bi%20c%E1%BA%A1nh%20%C4%91%C3%A1y.
Gọi giao điểm của BM với AC; CM với AD lần lượt là D và E
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó;ΔEBC=ΔDCB
Suy ra: \(\widehat{MCB}=\widehat{MBC}\)
hay ΔMBC cân tại M
=>\(\widehat{MBC}=\dfrac{180^0-140^0}{2}=20^0\)
=>\(\widehat{ACB}=\widehat{ABC}=70^0\)
hay \(\widehat{BAC}=40^0\)
Trường hợp 1: ΔABC không cân
=>AM>AH(ΔAHM vuông tại H)
Trường hợp 2: ΔABC cân tại A
=>M trùng với H
=>AM=AH
Do đó: AM>=AH
M P N D E H K
a) Xét tam giác PMD và tam giác EMD, ta có :
PMD = EMD ( gt )
MD chung
MP = ME ( gt )
=> Tam giác PMD bằng Tam giác EMD ( c . g . c )
b) Xét tam giác MPK và tam giác MEK, ta có :
PMD = EMD ( gt )
MK chung
MP = ME ( gt )
=> Tam giác MPK = Tam giác MEK ( c . g .c )
=> KP = KE ( 1 )
=> MKE = MKP = 900 ( 2 )
Từ 1 và 2 suy ra MDlaf đường trung trực đoạn thẳng PE
c) Ta có MDN = MDH { ( 1800 - PDE ) + MDE }
Xét tam giác MHD và tam giác MND, ta có :
HMD = NMD ( gt )
MD chung
MDN = MDH ( gt )
=> Tam giác MHD bằng tam giác MND ( g . c .g )
=> HD = DN
d)
Hướng dẫn:
Xét hai tam giác vuông EBC và FCB có:
BC (cạnh huyền chung)
BE = CF (giả thiết)
Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)
=> \(\widehat{FBC}=\widehat{ECB}\)
hay ∆ABC cân tại A
+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được ba góc của chúng bằng nhau, suy ra đó là tam giác đều.
Bạn Thien Tu Borum làm nhanh vô rồi sai hình thức rồi kìa