Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 9.10 + 10.11 + ....+ 1000.1001
Nhân B với 3 ta được:
9.10.3 + 10.11.3 + ... + 1000.1001.3 =
9.10.(11-8) + 10.11.(12-9) + .... + 1000.1001.(1002-999) =
9.10.11 – 8.9.10 + 10.11.12 – 9.10.11 + ... + 1000.1001.1002 – 999.1000.1001 =
1000.1001.1002 – 8.9.10 = 1 003 001 280
B = 1 003 001 280 : 3 = 334 333 760
Câu hỏi của Phung Ngoc Quoc Bao - Toán lớp 6 - Học toán với OnlineMath
Cách thực hiện y hệt
\(S=9\cdot10+10\cdot11+11\cdot12+...+99\cdot100\)
\(3S=9\cdot10\cdot3+10\cdot11\cdot3+11\cdot12\cdot3+...+99\cdot100\cdot3\)
\(3S=9\cdot10\cdot\left(11-8\right)+10\cdot11\cdot\left(12-9\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(3S=9\cdot10\cdot11-8\cdot9\cdot10+10\cdot11\cdot12-9\cdot10\cdot11+...+99\cdot100\cdot101-98\cdot99\cdot100\)
\(3S=99\cdot100\cdot101\)
\(S=\frac{99\cdot100\cdot101}{3}=333300\)
Ta có: A = 1.2 + 2.3 + 3.4 + 4.5 +....+ 98.99
⇒⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 +....+ 98.99.3
⇒⇒ 3A = 1.2.3 + 2.3(4-1) + 3.4(5-2) + 4.5(6-3) +.....+ 98.99(100-97)
⇒⇒ 3A = 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 + 4.5.6 - 4.5.3 + ....+ 98.99.100 - 98.99.97
⇒⇒ 3A = 98.99.100
⇒⇒ A = 98.99.100398.99.1003 = 323400
b, tự giải nhé
a, A = 1.2 + 2.3 + 3.4 + 4.5 + 5.6 + 6.7 + 7.8 + 8.9 + 9.10 + 10.11
= (1.2 + 2.3) + (3.4 + 4.5) + (5.6 + 6.7) + (7.8 + 8.9) + (9.10 + 10.11)
= 2( 1 + 3) + 4( 3 + 5) + 6( 5 + 7) + 8 ( 7 + 9) + 10( 9 + 11)
= 2.4 + 4.8 + 6.12 + 8.16 + 10.20 = 2.2.2 + 2.4.4 + 2.6.6 + 2.8.8 + 2.10.1
b,tương tự nhé
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{13\cdot14}+\frac{1}{14\cdot15}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{14}-\frac{1}{15}\)
\(=\frac{1}{2}-\frac{1}{15}\)
\(=\frac{13}{30}\)
co \(\frac{1}{9\cdot10}=\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{10\cdot11}=\frac{1}{10}-\frac{1}{11}\)
............
\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
nen \(\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+...+\frac{1}{x\left(x+1\right)}\)
\(=\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}-...+\frac{1}{x}-\frac{1}{x+1}\)
=\(\frac{1}{9}-\frac{1}{x+1}\)
2 . ( \(\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+...+\frac{1}{x\left(x+1\right)}\))
= 2 . ( \(\frac{1}{9}-\frac{1}{x+1}\)) = \(\frac{2}{9}-\frac{2}{x+1}\)
1003002000
cách giải ?