Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Δ=(2m-6)^2-4(m^2+3)
=4m^2-24m+36-4m^2-12=-24m+24
Để phương trình có hai nghiệm phân biệt thì -24m+24>0
=>m<1
x1^2+x2^2=36
=>(x1+x2)^2-2x1x2=36
=>(2m-6)^2-2(m^2+3)=36
=>4m^2-24m+36-2m^2-6-36=0
=>2m^2-24m-6=0
=>m^2-12m-3=0
=>\(m=6-\sqrt{39}\)
=>5x^2-6x-11=0
=>5x^2-11x+5x-11=0
=>(5x-11)(x+1)=0
=>x=11/5 hoặc x=-1
a, Ta có : \(\frac{y}{x}.\sqrt{\frac{x^2}{y^4}}=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}\)
b , Ta có : \(5xy\sqrt{\frac{x^2}{y^6}}=5xy\frac{x}{y^3}=\frac{5x^2}{y^2}\)
c, Ta có : \(0,2x^3y^3\sqrt{\frac{16}{x^4y^8}}=0,2x^3y^3.\frac{4}{x^2y^4}=\frac{0,8x}{y}\)
\(\sqrt{x+1}=3x+7\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow x+1=\left(3x+7\right)^2\)
\(\Leftrightarrow x+1=9x^2+42x+49\)
\(\Leftrightarrow x+1-9x^2-42x-49=0\)
\(\Leftrightarrow-9x^2-41x-48=0\)
Ta có: \(\Delta=\left(-41\right)^2-4\cdot-9\cdot-48=-48< 0\)
Vậy Pt vô nghiệm
\(\sqrt[]{x+1}=3x-7\Leftrightarrow\left\{{}\begin{matrix}3x-7\ge0\\x+1=\left(3x-7\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\x+1=9x^2-42x+49\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\9x^2-43x+48=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\Delta=1849-1728=121\Rightarrow\sqrt[]{\Delta}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{43+11}{2.9}=3\\x_2=\dfrac{43-11}{2.9}=\dfrac{32}{18}=\dfrac{16}{9}\end{matrix}\right.\)
so với điều kiện \(x\ge\dfrac{7}{3}\)
\(\Rightarrow x=3\)
\(\Delta=9-4\left(1-m\right)=4m+5\)
Pt có 2 nghiệm khi: \(4m+5\ge0\Rightarrow m\ge-\dfrac{5}{4}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=1-m\end{matrix}\right.\)
\(x_1^2+x_2^2=17\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=17\)
\(\Leftrightarrow9-2\left(1-m\right)=17\)
\(\Leftrightarrow2m=10\)
\(\Rightarrow m=5\) (thỏa mãn)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
ĐKXĐ : \(x>0\)
Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có
\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)
Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)
\(P=\sqrt[]{x}+\dfrac{4}{\sqrt[]{x}}\left(x>0\right)\)
\(P=\dfrac{x+4}{\sqrt[]{x}}=\dfrac{x+4}{\sqrt[]{x}}\)
Vì \(x>0;x+4>4\)
\(\Rightarrow P=\dfrac{x+4}{\sqrt[]{x}}>4\)
⇒ Không có giá trị nhỏ nhất
Lời giải:
ĐKXĐ: $x\neq 0; -0,2$
PT $\Leftrightarrow \frac{8(x+0,2)+6x}{x(x+0,2)}=20$
$\Leftrightarrow \frac{14x+1,6}{x(x+0,2)}=20$
$\Rightarrow 14x+1,6=20x(x+0,2)$
$\Leftrightarrow 20x^2-10x-1,6=0$
$\Leftrightarrow x^2-\frac{1}{2}x-0,08=0$
$\Leftrightarrow (x-\frac{1}{4})^2=\frac{57}{400}$
$\Rightarrow x-\frac{1}{4}=\pm \frac{\sqrt{57}}{20}$
$\Leftrightarrow x=\frac{5\pm \sqrt{57}}{20}$