Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(x^2-4x-5\ge0\)
Phương trình \(\Leftrightarrow2\left(x^2-4x-6\right)-3\sqrt{x^2-4x-5}=0\)
Đặt \(\sqrt{x^2-4x-5}=t\ge0\Rightarrow x^2-4x-5=t^2\Rightarrow x^2-4x-6=t^2-1\)
\(\Rightarrow2\left(t^2-1\right)-3t=0\Leftrightarrow2t^2-3t-2=0\Leftrightarrow\orbr{\begin{cases}t=2\left(tm\right)\\t=-\frac{1}{2}\left(l\right)\end{cases}}\)
Với \(t=2\Rightarrow x^2-4x-5=4\Rightarrow x^2-4x-9=0\Rightarrow\orbr{\begin{cases}x=2+\sqrt{13}\\x=2-\sqrt{13}\end{cases}}\)
Vậy phương trình có 2 nghiệm \(x=2+\sqrt{13}\)hoặc \(x=2-\sqrt{13}\)
\(a.\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\sqrt{2+\sqrt{3}}.\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3+1}\right)^2}\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)^2=\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\left(2^2-\sqrt{3}^2\right)=2\)
\(1.A=x-3\sqrt{x}+5=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) Điều kiện: \(x\ge0\)
\(\Rightarrow MinA=\frac{11}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\left(TM\right)\)
\(2.B=\left(x-2015\right)-\sqrt{x-2015}+2015=\left(\sqrt{x-2015}-\frac{1}{2}\right)^2+2015-\frac{1}{4}\) điều kiện: \(x\ge2015\)
\(B\ge2015-\frac{1}{4}=\frac{8059}{8060}\)
Dấu "=" xảy ra khi \(\sqrt{x-2015}-\frac{1}{2}=0\Leftrightarrow x-2015=\frac{1}{2^2}\Leftrightarrow x=\frac{8061}{8060}\left(TM\right)\)
Ta có \(B=\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}+\frac{1}{2}\)
Áp dụng bất đẳng thức Cosi được \(\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}\ge2\Rightarrow B\ge2+\frac{1}{2}=\frac{5}{2}\)
Dấu đẳng thức xảy ra <=> \(\sqrt{x}-1=2\Leftrightarrow x=9\)
Vậy Min B = \(\frac{5}{2}\Leftrightarrow x=9\)
\(B=\frac{1}{-\left(x-2\sqrt{x}+1\right)-2}=\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\)
\(\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow-\left(\sqrt{x}-1\right)^2\le0\)
\(\Leftrightarrow-\left(\sqrt{x}-1\right)^2-2\le-2\)
\(\Leftrightarrow\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\ge\frac{1}{-2}=\frac{-1}{2}\)
\("="\Leftrightarrow x=1\)
Vậy biểu thức B đạt giá trị nhỏ nhất là -1/2 khi x=1
\(\sqrt{x-1}+x^2-1=0\)DK: \(x\ge1\)\(\Leftrightarrow\sqrt{x-1}\left[1+\left(x+1\right)\sqrt{x-1}\right]=0\Leftrightarrow\)
*\(\sqrt{x-1}=0=>x=1\)
*\(1+\left(x+1\right)\sqrt{x-1}=0\Leftrightarrow vonghiem\)
KL: x=1
b)
\(\sqrt{x^2+3}=!x^2+1!\) đặt x^2+1=t=> t>=1
\(\sqrt{t+2}=t\Leftrightarrow t^2-t-2=0=>t=-1\left(hoacloai\right)\&t=2\)
=>\(x=+-1\)
c)
\(x^3+4=4x\sqrt{x}\) dk x>=0
\(x^3+4=4\sqrt{x^3}\) \(Dat..\sqrt{x^3}=t=>t\ge0\)
t^2+4=4t<=>t^2-4t+4=0=> t=2=> x=\(\sqrt[3]{4}\)
nếu bạn muốn minh trả lời tiếp hay gui link truc tiep den minh.
xem bài và kiểm tra lại số liệu rất có thể sai lỗi số học.
sao không thấy ai giải/
thấy có loi roi vào copy pass linh tinh
Em tìm điều kiện xác định của bài toán.
Sau đó bình phương hai vế lên (cả hai vế đều >0) xem ra kết quả gì?
\(A=\sqrt{\left(x+2\right)^2+7}+\sqrt{\left(x-4\right)^2+7}\)
Dạng bài này sử dụng bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)
Chứng minh:
\(\left(1\right)\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(+\text{Nếu }ac+bd< 0\text{ thì }VT\ge0>VP,\text{ bđt luôn đúng.}\)
\(\text{+Nếu }ac+bd>0\)
\(\text{bđt}\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)
Do bđt cuối đúng nên bất đẳng thức đã cho cũng đúng.
Vậy ta có đpcm.
Dấu bằng xảy ra khi \(ad=bc\)
\(A=\sqrt{\left(x+2\right)^2+\left(\sqrt{7}\right)^2}+\sqrt{\left(4-x\right)^2+\left(\sqrt{7}\right)^2}\)
\(\ge\sqrt{\left(x+2+4-x\right)^2+\left(\sqrt{7}+\sqrt{7}\right)^2}\)
\(=\sqrt{64}=8.\)
Dấu bằng xảy ra khi \(\left(x+2\right).\sqrt{7}=\left(4-x\right).\sqrt{7}\Leftrightarrow x+2=4-x\Leftrightarrow x=1.\)
Vậy GTNN của biểu thức là 8.