Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEDK có
EM là đường cao
EM là đường phân giác
Do đó: ΔEDK cân tại E
b: Xét ΔEDM và ΔEKM có
ED=EK
\(\widehat{DEM}=\widehat{KEM}\)
EM chung
DO đó: ΔEDM=ΔEKM
Suy ra: DM=DK
mà ED=EK
nên EM là đường trung trực của DK
\(\text{#TNam}\)
`a,` Xét Tam giác `HED` và Tam giác `HFD` có
`DE = DF (\text {Tam giác DEF cân tại D})`
\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`
`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`
`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`
`-> HE = HF (\text {2 cạnh tương ứng})`
Xét Tam giác `HEM` và Tam giác `HFN` có:
`HE = HF (CMT)`
\(\widehat{E}=\widehat{F}\) `(a)`
\(\widehat{EMH}=\widehat{FNH}=90^0\)
`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`
`-> EM = FN (\text {2 cạnh tương ứng})`
Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)
Mà `DE = DF, ME = NF`
`-> MD = ND`
Xét Tam giác `DMN: DM = DN (CMT)`
`-> \text {Tam giác DMN cân tại D}`
`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)
Tam giác `DEF` cân tại `D`
`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)
`->`\(\widehat{DMN}=\widehat{E}\)
Mà `2` góc này nằm ở vị trí đồng vị
`-> \text {MN // EF (t/c 2 đt' //)}`
a)xét ΔEMF và ΔFNE có:
\(\widehat{EMF}\)=\(\widehat{FNE}\)=\(90^o\)
EF là cạnh chung
\(\widehat{MFE}\)=\(\widehat{NEF}\)(ΔDEF cân tại D)
\(\Rightarrow\)ΔEMF=ΔFNE(cạnh huyền góc nhọn)
vì ΔDEF cân tại D \(\Rightarrow\)DE=DF
mà EN=FM
\(\Rightarrow\)DE-EN=DF-FM
hay DN=DM
b)xét ΔDHN và ΔDHM có:
\(\widehat{DNH}\)=\(\widehat{DMH}\)=\(90^o\)
DN=DM(ch/m trên)
DH là cạnh chung
\(\Rightarrow\)ΔDHN=ΔDHM(cạnh huyền cạnh góc vuông)
\(\Rightarrow\)\(\widehat{MDH}\)=\(\widehat{NDH}\)(2 góc tương ứng)
kéo dài DH cắt EF tại O ta được:
xét ΔDOF và ΔDOE có:
DE=DF(ΔDEF cân tại D)
\(\widehat{FDO}\)=\(\widehat{EDO}\)(ch/m trên)
\(\widehat{DEO}\)=\(\widehat{DFO}\)(ΔDEF cân tại D)
\(\Rightarrow\)ΔDOF=ΔDOE(g-c-g)
\(\Rightarrow\widehat{DOE}=\widehat{DOF}\)(2 góc tương ứng)(1)
OE=OF(2 cạnh tương ứng)(2)
Mà \(\widehat{DOE}+\widehat{DOF}=180^o\)(2 góc kề bù)(3)
Từ (1)và(3)\(\Rightarrow\)\(\widehat{DOE}=\widehat{DOF}=\dfrac{180^o}{2}=90^o\)(4)
Từ (2)và(4)\(\Rightarrow\)DH là trung trực của EF(đ.p.cm)
a: Xet ΔDEN và ΔFEN có
ED=EF
góc DEN=góc FEN
EN chung
=>ΔDEN=ΔFEN
=>ND=NF
=>ΔNDF cân tại N
b: ΔDEN=ΔNFE
=>góc NFE=90 độ
=>NF vuông góc EF
c: Xét ΔDEP có
DF là trung tuyến
DF=EP/2
=>ΔDEP vuông tại D
Hình vẽ: