Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công thức tính chu vi đường tròn:
\(C = \pi .d = \pi .2r\) (đơn vị độ dài)
Trong đó, \(C\) là chu vi đường tròn; \(r\) là bán kính đường tròn; \(d\) là đường kính đường tròn.
Vì \(C = 2\pi .r\) nên \(C\) là hàm số bậc nhất theo biến \(r\) vì có dạng \(C = a.r + b\).
Ta có: \(C = 2\pi .r\) nên \(a = 2\pi ;b = 0\).
Vậy C là một hàm số bậc nhất theo biến \(r\) với \(a = 2\pi ;b = 0\).
\(C=d.\pi=2r.\pi\left(\pi:hằng.số\right)\)
=> C là hàm số bậc nhất theo biến số r
\(a=2\pi;b=0\)
Chu vi lúc đầu là : \(\left(2+3\right)x2\left(m\right)\)
Chu vi lúc sau là : \(\left(2+x+3+x\right).2=\left(5+2x\right).2=4x+10\)
\(\Rightarrow\) Hàm số chu vi là : \(y=4x+10\) là hàm bậc nhất có :
\(\left\{{}\begin{matrix}a=4\\b=10\end{matrix}\right.\)
không thể vì sẽ có số 1 với số bất kì 1<n<12
Vậy 2<1 + n<13
K thể xếp đc 12 số này trên một vòng tròn sao cho 2 số kề nhau bất kỳ có tổng lớn hơn 12
Bởi dù xếp thế nào cũng sẽ có 1 số có 1+n(1 số bất kì)<12
Từ dữ kiện thứ hai, ta thấy 4 số có cùng số dư khi chia cho 3 nên tổng nhỏ nhất là \(1+7+13+19=40\) (giữ lại đáp án ban đầu nhé)
Từ dữ kiện thứ nhất ta thấy hoặc cả 4 số đều lẻ, hoặc cả 4 số đều chẵn.
Từ dữ kiện thứ 2 ta thấy cả 4 số đều phải chia hết cho 3.
Suy ra tổng nhỏ nhất của 4 số là \(1+7+13+19=40\)
gọi số bé là a (ĐK) ta có a + 11a = 44 <=> 12a = 44 <=> a = 3,(6)